Responsive image
博碩士論文 etd-0726110-125708 詳細資訊
Title page for etd-0726110-125708
論文名稱
Title
非晶與奈米晶多層膜系統之變形機制與剪切帶行為
Deformation Mechanism and Shear Banding Behavior in Amorphous/Nanocrystalline Multilayer System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-28
繳交日期
Date of Submission
2010-07-26
關鍵字
Keywords
非晶、多層膜、剪切帶
shear band, multilayer, amorphous
統計
Statistics
本論文已被瀏覽 5702 次,被下載 0
The thesis/dissertation has been browsed 5702 times, has been downloaded 0 times.
中文摘要
過去幾十年至今,非晶質合金藉由它獨特的物理及化學性質一直受到廣泛的注意,例如:抗腐蝕性、大彈性區間、高強度與高硬度。同時也被視為微機電材料中,有潛力的材料之一。然而,儘管塊狀非金質合金擁有如此獨特的特性,它仍然很難被應用於微機電材料中,不如薄膜非晶質合金的實用性。但是相對於塊狀非晶質合金,對於薄膜非晶質合金的研究以及微機電上的應用仍相當少。因此在本研究中,嘗試研究多層膜系統對薄膜非晶質合金性質的影響。

在本實驗中,選用由非晶/結晶所組成的奈米薄片作為實驗中的多層膜薄膜。利用雙焦離子束 (dual focus ion beam),將多層膜試片切削為直徑1 m的壓縮測試試片,並進行室溫壓縮測試實驗。在壓痕測試中,應變爆發的現象隨著多層膜系統的使用,能有效減少。意指多層膜系統能減緩非晶質合金內部剪切帶的滑移,使剪切帶的行進能減緩不致於形成主要的剪切帶。

在壓縮測試實驗中,在ZrCu (100 nm)/Cu (50 nm)與ZrCu (100 nm)/Cu (10 nm)多層膜的壓縮變形行為,仍是藉由應變爆發所造成的剪切帶滑移來釋放能量;但對於ZrCu (100 nm)/Cu (100 nm)試片的壓縮測試後結果,則呈現連續性的變形與平滑的應力應變曲線,並且無應變爆發現象產生。首先,對於足夠厚的銅結晶層能夠用於吸收非晶質合金層在剪切變形時的能量。第二,銅結晶層受力,會先進行塑變行為。此側向的塑變流提供在層與層的介面間無應力集中的剪力行為。意指非晶質合金層能進行無應力集中的變形行為並達到均質性的形變 (homogeneous deformation)。根據此兩種變形機制,推測ZrCu (100 nm)/Cu (100 nm)多層膜為比較合適的形變系統並能有效改善非晶質合金的延性與維持其高強度的特性。
Abstract
Over the past decades, bulk metallic glasses (BMGs) have attracted extensive interests because of their unique physical and chemical properties such as good corrosion resistance, larger elastic elongation limit and high strength and hardness. They are also seen as the potential material for micro-electro-mechanical systems (MEMS). However, despite many extraordinary properties in BMGs, BMGs might be difficult to be made into MEMS, different from thin film metallic glasses (TFMGs). Compared with BMGs, few studies have been carried out on TFMGs and their application for MEMS. In this study, efforts have been made to study the properties of multilayered TFMGs.

The multilayer thin film selected in this thesis is amorphous/nanocrystalline nanolaminate systems. The micro-pillars of multilayered TFMGs with diameter of 1 μm are fabricated by using focus ion beam (FIB) and tested in microcompression at room temperature. On nano-indentation test, the phenomenon of strain burst decreases by way of multilayer system. It means that the multilayer system can retard the shear band propagation initiated from the amorphous layers.

Under the microcompression test, the deformation of both ZrCu (100 nm)/Cu (50 nm) and ZrCu (100 nm)/Cu (10 nm) multilayer micro-pillars are still dominated by the emission of shear bands in a manner of strain burst to release the energy, but the ZrCu (100 nm)/Cu (100 nm) multilayer thin films reveal continuous deformation and smooth stress-strain curve with no strain burst. First, the sufficient thick of copper layer can absorb more energy from shear deformation of amorphous layer. Second, the copper layer exhibits plastic flow along the transverse direction under the iso-stress deformation. The transverse plastic flow acts as a shear force at interface causing non-stress concentration at amorphous layer. It means that the amorphous layer can be deformed to large plastic strain without stress concentration, causing a homogeneous deformation. According to these two deformation mechanisms, it is possible that the ZrCu (100 nm)/Cu (100 nm) multilayer thin film is better system for improving the ductility of amorphous alloy with a good strength.
目次 Table of Contents
Content i
List of tables iv
List of figures v
Abstract ix
中文摘要 xi
Chapter 1 Introduction 1
1-1 Amorphous alloys 1
1.2 The evolution of amorphous alloys 1
1.3 The development of thin film metallic glasses (TFMGs) 3
1.4 Motivation 5
Chapter 2 Background and literature review 7
2-1 The character conditions of amorpuous alloys 7
2-1-1 Supercooled liquid region (SCLR) 7
2-1-2 Glass forming ability (GFA) 7
2-2 The empirical rules for forming amorphous alloys 10
2-3 Manufacture methods of metallic glasses 11
2-3-1 Cooling from gaseous state to solid state 11
2-3-2 Cooling from liquid state to solid state 12
2-3-3 Solid-solid state reaction in only solid phase 12
2-4 Principle of sputter deposition process 13
2-4-1 Introduction of sputtering 13
2-4-2 The advantages of using sputtering 14
2-4-3 Nucleation and growth of sputter-deposited thin film 15
2-4-4 Amorphous film growth 16
2-5 Properties of thin film metallic glasses (TFMGs) 17
2-5-1 Thermal properties 17
2-5-2 Electrical properties 18
2-5-3 Magnetic properties 18
2-5-4 Mechanical properties 18
2-6 Microscale characterization of mechanical properties 20
2-6-1 Introduction of microcompression tests 20
2-6-2 Parameters of microcompression tests 20
2-6-3 Microscale mechanical propertyes on micropillars 23
2-6-4 Microscale mechanical properties on multilayer structure 25
Chapter 3 Experimental procedures 29
3-1 Materials 29
3-2 Sample preparation 29
3-2-1 Substrate preparation 29
3-2-2 Preparation for thin films and multilayer thin films 30
3-3 Property measurements and analyses 31
3-3-1 X-ray diffraction 31
3-3-2 SEM observations 31
3-3-3 Qualitative and quantitative component analyses 32
3-4 Nanoindentation tests 32
3-5 Microcompression tests 33
3-5-1 Preparation for microcompression sample 33
3-5-2 Microcompression test by using nanoindentation system 33
3-5-3 Preparation for TEM foils of the deformed micropillars 33
Chapter 4 Results and Discussion 35
4-1 Sample preparations 35
4-2 EDS analyses 36
4-3 XRD analyses 36
4-4 TEM analysis 36
4-5 Mechanical property analyses 37
4-6 Microcompression test analyses 38
4-6-1 Compression results for multilayer thin films 38
4-6-2 SEM characterization on micro-pillars 39
4-6-3 TEM analysis on pillar samples 41
Chapter 5 Conclusion 44
References 45
Tables 51-57
Figures 58-103
參考文獻 References
[1] A.C. Lund and C. A. Schuh. J. Appl. Phys. 95, 4815-4822 (2004).
[2] W. L. Johnson. MRS Bull. 24, 42-56 (1999).
[3] A. Inoue. Acta Mater. 48, 279-306 (2000).
[4] W. Klement, R. H. Willens and P. Duwez. Nature 187, 869-870 (1960).
[5] 吳學陞. 工業材料 149, 154-165 (1999).
[6] H. S. Chen and D. Turnbull. J. Chem. Phys. 48, 2560-2571 (1968).
[7] H. S. Chen and D. T. Turnbull. Acta Metall. 17, 1021-1031 (1969).
[8] H. S. Chen and C. E. Miller. Rev. Sci. Intrum. 41, 1237-1238 (1970).
[9] H. S. Chen. Acta Metall. 22, 1505-1511 (1974).
[10] A. Inoue, T. Zhang and T. Masumoto. Mater. Trans. JIM 31, 425-428 (1990).
[11] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma. Appl. Phys. Lett. 87, 181915 (2005).
[12] W. H. Wang, C. Dong and C. H. Shek. Mater. Sci. Eng. R 44, 45-89 (2004).
[13] J. F. Loffler. Intermetallics 11, 529-540 (2003).
[14] R. B. Schwarz and W. L. Johnson. Phys. Rev. Lett. 51, 415-418 (1983).
[15] E. J. Cotts, W. J. Meng and W. L. Johnson. Phys. Rev. Lett. 57, 2295-2298 (1986).
[16] Q. M. Chen, Y. D. Fan and H. D. Li. Mater. Lett. 6, 311-315 (1988).
[17] G. Minnigerode, A. Regenbrecht and K. Samwer. Z. Phys. Chem. Neue Folge, Bd. 157, 197-201 (1988).
[18] A. Regenbrecht, G. von Minnigerode and K. Samwer. Z. Phys. B: Condens. Matter. 79, 25-31 (1990).
[19] J. Dudonis, R. Brucas and A. Miniotas. Thin Solid Films 275, 164-167 (1996).
[20] S. Hata, K. Sato and A. Shimokohbe. Proc. SPIE 3892, 97-108 (1999).
[21] Y. Liu, S. Hata, K Wata and A. Shimokohbe. Jpn. J. Appl. Phys. 40, 5382-5388 (2001).
[22] Y. Liu, S. Hata, K. Wada and A. Shimokohbe. MEMS 18th IEEE International Conference (2001).
[23] S. Suresh, T. G. Nieh and B.W. Choi. Scripta. Mater. 41, 951-957 (1999).
[24] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos and S. Suresh. Acta Mater. 48, 2277-2295 (2000).
[25] S. H. Hong, K. S. Kim, Y. M. Kim, J. H. Hahn, C. S. Lee and J. H. Park. Comp. Sci. and Tech. 65, 1401-1408 (2005).
[26] T. G. Nieh and J. Wadsworth. Scripta Mater. 44, 1825-1830 (2001).
[27] J. Schroers, Q. Pham and A. Desai. J. Microelectromech. Syst. 16, 2 (2007).
[28] T.G. Nieh, T.W. Barbee and J. Wadsworth. Scripta Mater. 41, 929-935 (1999).
[29] A. Donohue, F. Spaepen, R. G. Hoagland and A. Misra. Appl. Phys. Lett. 91, 3 (2007).
[30] L. A. Marvina and V. B. Marvin. Tech. Phys. 42, 49-53 (1997).
[31] Y. T. Cheng. MS Thesis, Amorphization and Nanocrystallizatio Behavior in Mg-Cu-Y Alloy by Adding Boron, National Sun Yat-Sen University, Kaohsiung, Taiwan,(2005).
[32] W. N. Myung, I. S. Hwang, H. Y. Bae, H. G. Kim, T. Masumoto and A. L. Greer, Mater. Sci. Eng. A 467, 304-306 (2001).
[33] W. N. Myung, S. P. Ryu, I. S. Hwang, H. G. Kim, T. Zhang and A. Inoue, Mater. Sci. Eng. A 691, 304-306 (2001).
[34] W. N. Myung, S. P. Ryu, I. S. Heang, H. G. Kim, T. Zhang and A. Inoue, Mater. Sci. Eng. A 687, 304-306 (2001).
[35] Y. C. Chang, J. C. Huang, Y. T. Cheng, C. J. Lee, X. H. Du and T. G. Nieh, J. Appl. Phys. 103, 03521 (2008).
[36] D. Turnbull. Contemp. Phys. 10, 473-488 (1969).
[37] M. Sasd and M. Poulain. Mater. Sci. Forum 19-20, 11-18 (1987).
[38] I. W. Donald and H. A. Davies. J. Non-Crystalline Solids 30, 77-85 (1978).
[39] O. N. Senkov and D. B. Miracle. Mater. Res. Bull. 36, 2183-2198 (2001).
[40] Z. J. Yan, J. F. Li, S. R. He and Y. H. Zhou. Mater. Res. Bull. 38, 681-689 (2003).
[41] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu. Mater. Trans. 48, 239-243 (2007).
[42] W. Chen, Y. Wang, J. Qiang and C. Dong. Acta Mater. 51, 1899-1907 (2003).
[43] Q. Wang, Y. M. Wang, J. B. Qiang, X. F. Zhang, C. H. Shek and C. Dong. Intermetallics 12, 1229-1232 (2004).
[44] Y. M. Wang, W. P. Xu, J. B. Qiang, C. H. Wong, C. H. Shek and C. Dong. Mater. Sci. Eng. A 375-377, 411-416 (2004).
[45] M. Iqbal, W. S. Sun, H. F. Zhang, J. I. Akhter and Z. Q. Hu. Mater. Sci. Eng. A 447, 167-173 (2007).
[46] D. Turnbull. Contemp. Phys. 10, 473-488 (1969).
[47] Z. P. Lu, H. Tan, Y. Li and S. C. Ng. Scripta Mater. 42, 667-673 (2000).
[48] Z. P. Lu and C. T. Liu. Acta Mater. 50, 3501-3512 (2002).
[49] Z. P. Lu and C. T. Liu. Intermetallics. 12, 1035-1043 (2004).
[50] X. H. Du, J. C. Huang, C. T. Liu and Z. P. Lu. J. Appl. Phys. 101, 086108 (2007).
[51] Z. P. Lu and C. T. Liu. Phys. Rev. Lett. 91, 115505 (2003).
[52] R. E. Reed-Hill and R. Abbaschian. Physical Metallurgy Principles, PWS,
Boston, USA. (1994).
[53] A. Inoue. Acta Mater. 48, 279-306 (2000).
[54] A. Inoue. Mater. Trans. JIM, 36, 866-875 (1995).
[55] A. Inoue, T. Zhang and A. Takeuchi. Mater. Sci. Forum. 855, 269-272 (1998).
[56] A. Inoue, A. Takeuchi and T. Zhang. Metall. Mater. Trans. A29, 1779 (1998).
[57] K. L. Chopra. Thin Film Phenomena. McGraw-Hill, New York, USA (1985).
[58] P. J. Hsieh. PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys using Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan (2004).
[59] W. Buckel. Z. Phys. 138, 136 (1954).
[60] M. S. El-Eskandarany and A. Inoue. Metall. Mater. Trans. A 33, 135-143 (2002).
[61] C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough. Appl. Phys. Lett. 43, 1017-1019 (1983).
[62] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai. Acta Mater. 47, 579-583 (1999).
[63] Z. P. Xing, S. B. Kang and H. W. Kim. Metall. Mater. Trans. A 33, 1521-1530 (2002).
[64] J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia. Metall. Mater. Trans. A 32, 3109-3115 (2001).
[65] A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepezko. Acta Mater. 46, 4233-4241 (1998).
[66] D. M. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing, Noyes publications, New Jersey, USA (1998).
[67] M. Ohring. Materials Science of Thin Film, 2nd ed., Academic press, San Diego, USA (1992).
[68] K. Wasa and S. Hayakawa. Handbook of Sputter Deposition Technology, Noyes Publications, New Jersey, USA (1992).
[69] S. Veprek and M. Heintz. Plas. Chem. Plas. Proc. 10, 3-26 (1990).
[70] S. Veprek and M. G. J. Veprek-Heijman. Appl. Phys. Lett. 56, 1766-1768 (1990).
[71] Y. Liu, S. Hata, K. Wada and A. Shimokohbe. 14th IEEE International Conference on Micro Electro Mechanical Systems, 102-105 (2001).
[72] C. Suryanarayana, A. Inoue and T. Masumoto. J. Mater. Sci. 15, 1993-200 (1980).
[73] F. Spaepen. Acta Matall. 25, 407-415 (1977).
[74] A. S. Argon. Acta Matall. 27, 47-58 (1979).
[75] L. H. Dai, M. Yan, L. F. Liu and Y. L. Bai. Appl. Phys. Lett. 87, 141916 (2005).
[76] M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix. Science 305, 986-989 (2004).
[77] H. Zhang, B.E. Schuster, Q. Wei and K. T. Ramesh. Scripta Mater. 54, 181-186 (2006).
[78] J. R. Greer, W. C. Oliver and W. D. Nix. Acta Mater. 53, 1821-1830 (2005).
[79] E. M. Savitskii and A. Prince. Handbook of Precious Metals. Hemisphere Publications, New York, USA (1969).
[80] M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade and H. L. Fraser. Scripta Mater. 54, 759-764 (2006).
[81] T. G. Park, S. Yi and D. H. Kim. Scripta Mater. 43, 109-114 (2000).
[82] B. E. Schuster, Q. Wei, M. H. Ervin, S. O. Hruszkewycz, M. K. Miller, T. C. Hufnagel and K. T. Ramesh. Scripta Mater. 57, 517-520 (2007).
[83] C. J. Lee, J. C. Huang and T. G. Nieh. Appl. Phys. Lett. 91, 161913 (2007).
[84] Y. H. Lai, C. J. Lee, Y. T. Cheng, H. S. Chou, H. M. Chen, X. H. Du, C. I. Chang, J. C. Huang, S. R. Jian, J. S. C. Jang and T. G. Nieh. Scripta Mater. 58, 890-893 (2008).
[85] Y. M. Wang, J. Li, A. V. Hamza and J. T. W. Barbee. Proc. Natl. Acad. Sci. U.S.A 104, 11155-11160 (2007).
[86] R. G. Hoagland, J. P. Hirth and A. Misra, Philos. Mag. 86, 3537 (2006).
[87] M. X. Liu, F. Ma, P. Huang, J. M. Zhang and K. W. Xu. Mater. Sci. and Eng. A 477, 295-299 (2008).
[88] M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai, C. J. Lee and T. G. Nieh. Scripta Mater. 61, 840-843 (2009).
[89] J. Y. Zhang, G. Liu, X. Zhang, G. J. Zhang, J. Sun and E. Ma. Scripta Mater. 62, 333-336 (2010).
[90] A. C. Fischer-Cripps. Vacuum 58, 569-585 (2000).
[91] E. C. G. Kirk, D. A. Williams and H. Ahmed. Inst. Phys. Conf. Ser. 100, 501-506 (1989).
[92] M. H. F. Overwijk, F. C. van den Heuvel and C. W. T. Bulle-Lieuwma, 1993, B11, 2021-2024. J. Vac. Sci. Technol. B 11, 2021-2024 (1993).
[93] R. M. Langford and A. K. Petford-Long. J. Vac. Sci. Technol. A19, 2186-2193 (2001).
[94] H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Mater. 54, 181-186
(2006).
[95] M. C. Liu, C. J. Lee, Y. H. Lai and J. C. Huang, Thin Solid Films. In press.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.8.42
論文開放下載的時間是 校外不公開

Your IP address is 3.145.8.42
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code