Responsive image
博碩士論文 etd-0726110-154044 詳細資訊
Title page for etd-0726110-154044
論文名稱
Title
半球微透鏡抗反射層太陽能電池之分析
Analysis of Hemispherical Microlens Anti-Reflection Coating Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-07-26
關鍵字
Keywords
太陽能電池、抗反射層結構、半球微結構
solar cell, anti-reflection coating, hemispherical microlens
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
隨著非再生能源的短缺及環保議題的考量,矽基太陽能電池日益受到重視,但也由於矽材料本身有較高反射率大約為38%,整體太陽能電池的轉換效率也不高。因此,如何有效地減少光在矽材料的表面反射率,為矽基太陽能電池研究的重要課題之一。本論文主要是設計表面微米及奈米結構當作抗反射層來減少矽薄膜太陽能電池的表面反射率,藉以提升太陽能電池的轉換效率。我們模擬了半球微結構和奈米線表面化結構,經由Lighttools套裝軟體計算光在各結構中表面反射率的大小,以討論各種結構的效應。
我們一開始先對四分之一波長厚度的抗反射層做反射率探討,並在此抗反射層上做半圓柱、波浪狀、角錐、圓錐、半球等表面化結構去做反射率比較。我們可以得到半球表面化結構有最佳的抗反射效果。本論文更針對半球微結構的半球半徑、半球間距、半球排列方式,來探討其對表面反射率的影響。其中我們提出半球中夾雜小半球之抗反射層結構,表面反射率可以下降至1.86 %。我們接著研究雙向表面化抗反射層結構,可以得到在400 nm到800 nm波段下較低之平均反射率大約為2.24 %。最後,我們也模擬了奈米線結構的表面反射率,在中心波長波段可以得到極小的反射率,我們並且分析奈米線的長度和傾斜角度對表面反射率的影響,以幫助設計高效率、低成本的太陽能電池。
Abstract
For the shortage of energy and the environmental issues, the development of solar cells has become an important technology. However, solar cells have low efficiency of energy conversion due to their high surface reflection on a flat Si substrate which is 38 %. To decrease the surface reflectance of the silicon solar cells, anti-reflection coatings (ARCs) are proposed on the solar cells. We use Lighttools software to investigate several kinds of ARCs to decrease the surface reflectance.
We first consider the reflectance of the single-layer ARC with quarter wavelength. It can effectively decrease about 30 % surface reflection as compared with a flat Si substrate. The half-cylinder texture and the wave texture are designed on a PMMA single-layer coating. It is found that the half-cylinder ARC and the wave ARC can usefully diminish the surface reflectance for perpendicular light.
Low reflectance can be achieved in the hemispherical microlens ARCs over an extended spectral region for omnidirectional incident light. The impact of the microlens sizes, periods, and arrangements are investigated. The lowest normal reflectance of the closely-packed triangular-lattice hemispherical microlens ARC is 4.8%. By adding smaller hemispherical microlenses, the surface reflectance of the hemispherical microlens ARC can be as low as 1.86 %. To obtain the lowest average surface reflectance, both-sided patterned surface texture ARCs are designed. Their lowest average surface reflectance is 2.24%. Finally, we simulate the reflectance of the nanowire ARCs. The influence of the wire length and the angle of inclination are discussed for high-efficiency and low-cost solar cells.
目次 Table of Contents
1.Introduction 1
1.1 Motivations 1
1.2 Chapter Outline 4

2.SimulationTool 11
2.1 Overview 11
2.2 Principle of the Simulation Tool 11
2.3 Simulation Setup 15

3.Numerical Results of Simple Anti-Reflection Coating 19
3.1 1-D Structure of Single Layer ARC 19
3.2 ARC Structures of Half Cylinders 20
3.3 Wave ARC 21
3.4 Pyramidal and Conical ARC Texture ARCs 22

4.Numerical Results of Hemispherical Microlens Anti-Reflection Coating 37
4.1 Hemispherical Microlens ARC 37
4.2 Effect of Microlens Arrangement 39
4.3 ARCs Formed by Hemispherical Microlens with Mixed Sizes 39
4.4 Reversed Hemispherical ARCs 40
4.5 Both-side Patterned Surface Texture 42
4.6 Nanowire ARC 43

5.Conclusions 67
Bibliography 69
參考文獻 References
[1 ]Aiken, D. J., “High performance anti-reflection coatings for broadband multi-junction solar cells,” Solar Energy Materials & Solar Cells., vol. 64, pp. 393–404, 2000.
[2] Bailat, J, E. Vallat-Sauvain, L. Feitknecht, C. Droz, and A. Shah, “Microstructure and open-circuit s voltage of n–i–p microcrystalline silicon solar cells,” J. Appl. Phys., vol. 93, pp. 5727–5732, 2003.
[3] Berginski, M., J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, and B. Rech, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys., vol. 101, pp. 074903, 2007.
[4] Chateau, N., and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” JOSA A., vol. 11, pp. 1321–1331, 1994.
[5] Chang, T. L., K. Y. Cheng, T. H. Chou, C. C. Su, H. P. Yang, and S. W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectronic Engineering, vol. 86, pp. 874–877, 2009.
[6] Chang, Y. A., Z. Y. Li, H. C. Kuo, T. C. Lu, S. F. Yang, L. W. Lai, L. H. Lai, and S. C. Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process,” Semiconductor Science and Technology, vol. 24, pp. 085007, 2009.
[7] Chu, A. K., J. S. Wang, Z. Y. Tsai, C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Solar Energy Materials & Solar Cells., vol. 93, pp. 1276–1280, 2009.
[8] Cid, M., N. Stem, C. Brunetti, A. F. Beloto, and C. A. S. Ramos, “Improvements in anti-reflection coatings for high efficiency silicon solar cells,” Surface and Coatings Technology, vol. 106, pp. 117–120, 1998.
[9] Fujiwara, H., and K. Michio, “Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy,” Appl. Phys. Lett., vol. 86, pp. 032112, 2005.
[10] Goetzberger, A., J. Luther, and G. Willeke, “Solar cells: past, present, future,” Solar Energy Materials & Solar Cells, vol. 74, pp. 1–11, 2002.
[11] Green, M. A., High efficiency silicon solar cells. Trans Tech Publication, Aedermannsdorf, Switzerland, 1987.
[12] Green, M. A., “Recent developments in photovoltaics,” Solar Energy, vol. 76, pp. 3–8, 2004.
[13] Han, K. H., H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Solar Energy Materials & Solar Cells, vol. 93, pp. 1214–1217, 2009.
[14] Huang, H. C., C. I. Lin, A. K. Joseph, and Y. D. Lee, “Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications,” J. of Chromatography A, vol. 1027, pp. 263–268, 2004.
[15] Kim, B., J. Bang, S. Jang, D. Kim, J. Kim, and A. Shah, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films, vol. 73, pp. 27437, 2010.
[16] Kwon, S., J. Yi, S. Y, J. S. Lee, and D. Kim, “Effects of textured morphology on the short circuit current of single crystalline silicon solar cells: Evaluation of alkaline wet-texture processes,” Current Applied Physics, vol. 9, pp. 1310–1314, 2009.
[17] Luque, A., and S. Hegedus, Handbook of Photovoltaic Science and Engineering. Wiley, New York, 2003.
[18] Markvart, T., Solar electricity. University of Southampton, UK, 1994.
[19] McLaren, A. D., Mathematics of Computation. American Mathematical Society, 1963.
[20] Nishioka, K., T. Sueto, and N. Saito, “Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle,” Applied Surface Science, vol. 255, pp. 9504–9507, 2009.
[21] Sakaguchi, K., N. Sato, K. Yamagata, Y. Fujiyama, and T. Yonehara, “Extremely high selective etching of porous Si for single etch-stop bond-and-etch-back silicon-on-insulator,” J. Appl. Phys., vol. 34, pp. 842–847, 1995.
[22] Street, R. A., Hydrogenated amorphous silicon. Cambridge University Press: Cambridge, 1991.
[23] Stelzner, T., M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology, vol. 19, pp. 295203, 2008.
[24] Sun, C. H., B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett., vol. 33, pp. 2224–2226, 2008.
[25] Vartuli, C. B., S. J. Pearton, C. R. Abernathy, and J. D. MacKenzie, “Wet Chemical Etching Survey of III-Nitrides,” Solid-State Electronics, vol. 41, pp. 1947–1951, 1997.
[26] Wang, Y., R. Tummala, L. Chen, L. Q. Guo, W. Zhou, and M. Tao, “Solution-processed omnidirectional antireflection coatings on amorphous silicon solar cells,” J. Appl. Phys., vol. 105, pp. 103501, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.6.114
論文開放下載的時間是 校外不公開

Your IP address is 18.217.6.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code