Responsive image
博碩士論文 etd-0726110-165847 詳細資訊
Title page for etd-0726110-165847
論文名稱
Title
抑制工業設施內諧波失真之混合式主動濾波器設計
Design of a Hybrid Active Filter to Suppress Harmonic Distortion in Industrial Facilities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-05
繳交日期
Date of Submission
2010-07-26
關鍵字
Keywords
主動濾波器、諧波、混合式主動濾波器、諧波共振
harmonics, harmonic resonance, hybrid active filter, Active filter
統計
Statistics
本論文已被瀏覽 5707 次,被下載 2
The thesis/dissertation has been browsed 5707 times, has been downloaded 2 times.
中文摘要
由於半導體技術的快速發展,二極體、閘流體等非線性負載在各式應用中廣
泛使用。這類非線性負載會在交流端產生大量諧波,在系統上造成諧波電壓電流
的汙染。在工業配線系統中,在用戶端點上安裝被動濾波器為處理諧波問題的典
型方案之一。然而這種但是隨著系統負載的變動,饋線電感、負載電感、變壓器
及濾波器等元件之間可能產生互相作用,進而產生諧波共振。諧波共振會在系統
上產生大量諧波電壓電流,使其電力品質嚴重惡化。
本文提出一併聯式混合式主動濾波器,來抑制工業配線系統中非線性負載所
產生的諧波失真。該混合式主動濾波器主要由一主動濾波器以及一調頻至七次諧
波頻率的被動濾波器。在本文所提出之控制設計下,該混合式主動濾波器可視為
諧波電導,以抑制安裝點上的諧波電壓。藉由一諧波電導控制器,來及時諧波電
導值調整並維持諧波電壓失真,以符合IEEE std. 519-1992 的標準規範。混合式
主動濾波器的電容在使用時將承擔該端點的基頻電壓,並允許反流器得以較低的
容量額定來加以操作。此外,本文提出一直流端電壓控制器以對直流端電容電壓
進行充電,並維持在操作電壓。不同於傳統控制器,該控制器乃是藉由控制領先
基頻電流來進行充電,而非傳統方法中直接從安裝端點處抽取基頻電流。本文使
用程式模擬以及實驗機台的量側結果,來驗證所提出的併聯式混合式主動濾波器
的特性以及功效。
Abstract
Due to the drastic development of semiconductor, nonlinear loads are widely
used in high-power applications, which results in harmonic distortion of current and
voltage in the power system. Installation of passive filter is one of the conventional
solutions to harmonic distortion. But line impedance, load inductors and/or filter
components may result in harmonic resonance, which amplifies the harmonic
components, and worsens the harmonic distortion and power quality.
This thesis proposed a control algorithm of shunt hybrid active filter to suppress
the harmonics and prevent harmonic resonance in industrial facilities. The hybrid
active filter is composed of an active filter and a seventh-harmonic frequency tuned
passive filter. The hybrid active filter functions as damping conductance for harmonic
frequencies. A dynamical tuning control is realized to adjust the damping conductance
for maintaining the voltage harmonic distortion. The suppressed harmonic distortion
is conformed to the harmonics limitation, such as IEEE std. 519-1992. The capacitors
of the hybrid filter sustain fundamental grid voltage and allow the inverter to operate
in lower kVA rating. In addition, a dc bus controller was designed to hold the
capacitor voltage by controlling the fundamental leading current. The simulations and
laboratory results are provided to verify the effectiveness on suppressing harmonic
resonance.
目次 Table of Contents
Contents
誌謝辭 IV
摘要 V
Abstract VI
Contents VII
List of Figures IX
List of Tables XI
CHAPTER 1 Introduction 1
1.1 Background and Motive 1
1.2 Objectives 2
1.3 Organization of the thesis 3
CHAPTER 2 Literature Review 4
2.1 Standard of harmonic distortion 5
2.2 Synchronous reference frame 8
2.3 Harmonic Resonance 10
2.4 Pure Shunt Active Filter 11
2.5 Hybrid Active Filter 13
2.5.1 Series Hybrid Active Filter 13
2.5.2 Shunt Hybrid Active Filter 16
2.6 Summary 20
CHAPTER 3 Principles of Operation 21
3.1 Introduction 21
3.2 Principles of Operation 22
3.3 Tuning Control 24
3.4 Current Regulator 25
3.5 DC bus control 26
3.6 Circuit Analysis 27
3.7 Summary 29
CHAPTER 4 Simulation Results 30
4.1 Introduction 30
4.2 Simulation Parameters 31
4.3 Circuit analysis 35
4.4 Current loop analysis 37
4.5 Time-domain Simulation Results 40
4.5.1 Steady-state waveform 40
4.5.2 Transient-state waveform 45
4.6 Summary 47
CHAPTER 5 Laboratory Test Results 48
5.1 Introduction 48
5.2 Laboratory Parameters 48
5.3 Laboratory Results 50
5.3.1 Steady- state laboratory results 50
5.3.2 Transient-state laboratory results 55
5.4 Summary 58
CHAPTER 6 Conclusion 59
Reference 60
Appendix 63
參考文獻 References
[1] IEEE Recommended practices and requirements for harmonic control in electrical
power systems, IEEE Std. 519-1992, 1993.
[2] G. Lemieux, “Power system harmonic resonance-a documented case,” IEEE Trans.
Ind. Appl., vol. 26, no. 3, pp. 483–488, May/Jun. 1990.
[3] E. J. Currence, J. E. Plizga, and H. N. Nelson, “Harmonic resonance at a
medium-sized industrial plant,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 682–690,
May/Jun. 1995.
[4] S. Bhattacharya. T.M. Frank. D.M. Divan, and B. Banerjee , “Active Filter System
Implementation,” IEEE Industry Applications Magazine, Vol. 4, no. 5, pp. 47-63,
Sep./Oct. 1998.
[5] H. Akagi, “Control strategy and site selection of a shunt active filter for damping
of harmonic propagation in power distribution systems,” IEEE Trans. Power Del., vol.
12, no. 1, pp. 354–363, Jan. 1997.
[6] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and performance of a
fully-digital-controlled shunt active filter for installation on a power distribution
system,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 132–140, Jan. 2002.
[7] S. Bhattacharya and D. Divan, “Active Filter Solutions For Utility Interface of
Industrial Loads,” in Proceedings of the 1996 International conference on Power
Electronics, Drives and Energy Systems for Industrial Growth, vol. 2, 1996, pp.
1078-1084.
61
[8] K. Wada, H. Fujita, and H. Akagi, “Considerations of a shunt active filter based on
voltage detection for installation on a long distribution feeder,” IEEE Trans. Ind.
Appl., vol. 38, no. 4, pp. 1123–1130, Jul./Aug. 2002.
[9] S. Bhattacharya and D. Divan, “Design and implementation of a hybrid series
active filter system,” in IEEE 26th Annual Power Electronics Specialists Conference,
1995, pp. 189–195.
[10] H. Fujita, T. Yamasaki, and H. Akagi, “A hybrid active filter for damping of
harmonic resonance in industrial power systems,” IEEE Trans. Power Electron., vol.
15, no. 2, pp. 215–222, Mar. 2000.
[11] D. Detjen, J. Jacobs, R. W. De Doncker, and H.-G. Mall, “A new hybrid filter to
dampen resonances and compensation harmonic currents in industrial power systems
with power factor correction equipment,” IEEE Trans. Power Electron., vol. 16, no. 6,
pp. 821–827, Nov. 2001.
[12] R. Inzunza and H. Akagi, “A 6.6-kV transformerless shunt hybrid active filter for
installation on a power distribution system,” IEEE Trans. Power Electron., vol. 20, no.
4, pp. 893–900, July 2005.
[13] Task Force on Harmonics modeling and Simulation, “Modeling and simulation of
the propagation of harmonics in electric power networks. II. Sample systems and
examples,” Trans. Power Delivery, vol. 11, no. 1, pp. 466–474, Jan. 1996.
[14] S. M. Williams, G. T. Brownfield, and J. W. Duffus, “Harmonic propagation on
an electric distribution system: field measurements compared with computer
simulation,” Trans. Power Delivery, vol. 8, no. 2, pp. 547–552, Apr. 1993.
62
[15] F.Z.Peng, H.Akagi and A.Nabae, “Compensation Characteristics of the
Combined System of Shunt Passive and Series Active Filters,” IEEE Trans. Ind. Appl.,
vol. 29, no. 1, pp. 144–152, Jan./Feb. 1993.
[16] H.Akagi, “Active Harmonic Filters,” Proceedings of the IEEE, vol. 93, no. 12, pp.
2128–2141, Dec. 2005.
[17] F.Z.Peng, “Application issues of active power filters,” IEEE Industry
Applications Magazine, vol. 4, no. 5, pp. 21–30, Sep./Oct. 1998.
[18] H. Akagi, S. Srianthumrong, Y. Tamai, “Comparison in circuit configuration and
filtering performance between Hybrid and Pure Shunt Active Filters,” 38th IAS
Annual Meeting, Industry Applications Conference 2003, vol. 2, pp.1195–1202, 2003
[20] H.Akagi, "Active and hybrid filters for power conditioning," Proceedings of the
2000 IEEE International Symposium, Industrial Electronics 2000, ISIE 2000, vol. 1,
pp. TU26 - TU36, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.229.253
論文開放下載的時間是 校外不公開

Your IP address is 3.149.229.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code