Responsive image
博碩士論文 etd-0726111-001301 詳細資訊
Title page for etd-0726111-001301
論文名稱
Title
探討PD-SOI p-MOSFETs之負偏壓溫度不穩定性及其物理機制研究
Investigation on Negative Bias Temperature Instability and Physical Mechanism of PD-SOI p-MOSFETs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-03
繳交日期
Date of Submission
2011-07-26
關鍵字
Keywords
部分空乏矽覆絕緣金氧半場效電晶體、自熱、機械應力、負偏壓溫度不穩定性、閘極引發基板效應
GIFBE, NBTI, PD-SOI p-MOSFET, mechanical strain, self-heating
統計
Statistics
本論文已被瀏覽 5650 次,被下載 6
The thesis/dissertation has been browsed 5650 times, has been downloaded 6 times.
中文摘要
本論文研究部分空乏矽覆絕緣金氧半場效電晶體元件進行負偏壓溫度不穩定性(NBTI)的物理機制的研究。閘極引發基板效應”Gate-Induced Floating Body Effect (GIFBE)” 對於NBTI的影響導致Floating Body (FB)元件的起始電壓(threshold voltage)劣化較Body Contact (BC)元件來得輕微,是由於FB元件的操作會在基板端累積載子,進而影響閘極氧化層的電場,使得NBTI之現象減緩。而由實驗可知,基板端累積之載子來源是由n+ poly-gate直接穿隧的電子與AEI(Anode electron injection)機制所產生之電子。
此外將引入機械應力(mechanical strain)探討其對於NBTI劣化的影響,無論是BC或FB元件,在施加應力之後其NBTI可靠度皆有提升現象,是由於外界應力(mechanical strain)的施加,導致電洞有效質量變大及所遇到之位障變高,故IG下降而降低與SI-H反應的機率,使NBTI劣化變輕微,對於FB元件在Strain過後矽的能隙窄化(Band gap narrowing)增加AEI機制之碰撞游離率而產生更多電子累積在基板端,因此比起BC元件更加減低NBTI之劣化效應。
然而在NBTI實驗過程中施加汲極端偏壓,造成汲極端橫向電場拉扯,降低電洞與SI-H的反應時間,使NBTI的劣化程度隨著施加汲極端偏壓越大而降低,但在施加較大的汲極端偏壓(VD>-1V)下會因較大的電流使SOI元件產生自熱現象,而加劇NBTI的劣化現象。
Abstract
This work investigates the influence of gate-induced floating body effect (GIFBE) on negative bias temperature instability (NBTI) in partial depleted silicon-on-insulator p-type metal-oxide-semiconductor field effect transistors (PD-SOI p-MOSFETs). The results indicate GIFBE causes a reduction in the electrical oxide field, leading to an underestimate of NBTI degradation. This can be attributed to the electrons tunneling from the process-induced partial n+ poly gate, and at higher voltages is dominated by the proposed anode electron injection (AEI) model.
Moreover, when introducing the mechanical strain to PD-SOI p-MOSFETs result in decreasing the NBTI degradation for BC and FB devices, because increase of effective mass of hole and barrier height to decrease the probability of reaction of NBTI. The degradation of NBTI on FB device less than BC device because of strain-induced band gap narrowing to substrate and p+ poly gate, resulting in the rising of rate of impact ionization in AEI model to increase the accumulation of electrons on body.
After that, giving the drain voltage in NBTI stress, the threshold voltage, Vth, shift decreases as drain voltage (VD) rising within the stress condition of VD= -1V. This phenomenon can be attributed to the shorter effective reaction time of hole and Si-H bonds after applying drain voltage during NBTI stress. However, beyond the condition at VD= -1V, the Vth shift rises as the drain voltage increasing. This behavior is resulted from the self-heating effect induced by the higher stress VD to increase the degradation of NBTI.
目次 Table of Contents
Thesis oral examination committee members approval sheet……….…i
Acknowledgement...………………………………………………………ii
Chinese abstract..…………………………………………………….…..iii
English abstract……………………………………..……………………iv
Figure Caption……………………………………..……………………vii
Chapter 1 Introduction
1-1 Background to the Semiconductor Device……………….…...…………………......1
1-2 Motivation……………….…………………………………………………………..1
1-3 Strain Technology..………………………………………………………………….3
Chapter 2 Foundation of Theory
2-1 SOI MOSFET….……………………………………………………………………7
2-2 Negative Bias Temperature Instability (NBTI)…....………………………………..8
2-2-1 the principle of NBTI.…………………………………..……...……………..8
2-2-2 Description of the R–D model...……………...……………………………...9
2-3 Gate Induced Floating Body Effect (GIFBE)………………………..………………9
2-4 Pulse I-V….………………………...………………………………………………10
Chapter 3 Experiment step and Parameters
3-1 Steps of Experiments…………………………………...…………………………..16
3-1-1 Preparation before Experiments………………....………………….………..16
3-1-2 The setting of the measurement….…………………………………...……...16
3-1-3 Polish the sample……….……………………………..…………………..…17
3-1-4 In applying Drain Voltage within NBTI stress.…………………..………..…18
3-2 Parameter....…………………………………………………...……………………18
3-3 Measurement machine...……………………………………………………………19
Chapter 4 Results and Discussion
4-1 Introduction of SOI sample in my experiment...……………………………..…….24
4-2 Gate-Induced Floating Body Effect on NBTI degradation in PD SOI p-MOSFETs……...………………………………………………………………25
4-3 Impact of Mechanical Strain on NBTI Degradation in PD SOI p-MOSFETs…..…28
4-4 Drain Voltage Dependence on NBTI Degradation in PD SOI p-MOSFETs……....30
Chapter 5 Conclusion……..………………………….…….…………...52
Reference..…………………...…………………………………….……..54
參考文獻 References
Chapter 1
[1-1] C. H. Dai, T. C. Chang, A. K. Chu, Y. J. Kuo, S. C. Chen, C. T. Tsai, W. H. Lo, S. H. Ho, Guangrui Xia, Osbert Cheng, C. T. Huang, “Enhanced gate-induced floating-body effect in PD SOI MOSFET under external mechanical strain,” Surface & Coatings Technology, vol. 205, pp.1470-1474, November 2010.
[1-2] W. Zhao, J.He, R. E. Belford, L. Wernersson, and A. Seabaugh, “Partially depleted SOI MOSFETs under uniaxial tensile strain,” IEEE Trans. Electron Devices, vol. 51, pp.317-323, March 2004.
[1-3] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald,31 and D. A. Antoniadis, “Straind silicon MOSFET technology,” in IEDM Tech. Dig., pp. 23-26, December 2002.
[1-4] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement,” in IEDM Tech. Dig., pp. 433-436, December 2001.
[1-5] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS Drive current reduction caused by transistor layout and trench isolation induced stress,” in IEDM Tech. Dig., pp. 827-830, December 1999.
Chapter 2
[2-1] T. Sakurai, A. Matsuzawa, T. Douseki, Fully-Depleted SOI CMOS Circuits and Technology for Ultralow-Power Applications, Springer, (2006).
[2-2] C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, and T. F. Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 53, No. 12, pp. 2993–3000, December 2006.
[2-3] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of Device Degradation in n- and p-Channel Polysilicon TFT’s by Electrical Stressing,” IEEE Electron Device, vol. 11, No. 4, pp. 167–170, April 1990.
[2-4] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of Negative Bias-Temperature Instability,” J. Appl. Phys., vol. 69, No. 3, pp. 1712–1720, February 1991.
[2-5] Jeppson KO, Svensson CM. “Negative bias stress of MOS devices at high electric fields and degradation of MOS devices,” Jpn. J. Appl. Phys., vol. 48, pp. 2004–2014, May 1977.
[2-6] Haldun Küflüo˜glu and Muhammad Ashraful Alam, “A Generalized Reaction–Diffusion Model With Explicit H–H2 Dynamics for Negative-Bias- Temperature-Instability (NBTI) Degradation,” IEEE, Electron Devices, vol. 54, pp. 1101–1107, May 2007.
[2-7] P.G.D. Agopian, J.A. Martino, E. Simoen, C. Claeys, “Impact of the twin-gate structure on the linear kink effect in PD SOI nMOSFETS,” Microelectronics Journal, vol. 37, pp. 681–685, August 2006.
[2-8] A. Mercha, J.M. Rafi, E. Simoen, E. Augendre, C. Claeys, “Linear kink effect" induced by electron valence band tunneling in ultrathin gate oxide bulk and SOI MOSFETS,” IEEE Transactions on Electron Devices, vol. 50, No. 7, pp. 1675–1682, July 2003.
[2-9] J. Pretet, T. Matsumoto, T. Poiroux, S. Cristoloveanu, R. Gwoziecki, C. Raynaud, A. Roveda and H. Brut, ESSDERC., pp. 515–518, 2002.
[2-10] M. F. Karim, S. Shaari, and B. Y. Majlis, ICSE Proceeding, Penang, Malaysia, pp. 287-292, November 1996.
[2-11] K.F Schuegraf and Chenming Hu, IEEE Transactions on Electron Devices, vol. 41, No. 5, pp. 761–767, 1994.
[2-12] P.G.D. Agopian, J.A. Martino, E. Simoen, C. Claeys, “Study of the linear kink effect in PD SOI nMOSFETs,” Microelectronics Journal, vol. 38, pp. 114–119, January 2007.
[2-13] P.G.D. Agopian, J.A. Martino, E. Simoen, C. Claeys, “Gate Oxide Thickness Influence on the Gate Induced Floating Body Effect in SOI Technology,” Journal Integrated Circuits and Systems, vol. 3, No. 2, pp. 91–95, 2008.
[2-14] J. Pretet, T. Matsumoto, T. Poiroux, S. Cristoloveanu, R. Gwoziecki, C. Raynaud, A. Roveda and H. Brut, “New mechanism of body charging in partially depleted SOI-MOSFETs with ultra-thin gate oxides,” Proc. ESSDERC., pp. 515–518, September 2002.
[2-15] A. Mercha, J. M. Rafi, E. Simoen, E. Augendre, and C. Claeys, “‘Linear kink effect’ induced by electron valence band tunneling in ultrathin gate oxide bulk and SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 1675–1682, July 2003.
[2-16] M. Casse, J. Pretet, S. Cristoloveanu, T. Poiroux, C. Fenouillet-Beranger, F. Fmleux, C. Raynaud, and G. Reimbold, “Gate-induced floating-body effect in fully depleted SOI MOSFETs with tunneling gate oxide and back-gate biasing,” Solid State Electron., vol. 48, pp. 1243–1247, July 2004.
[2-17] K. A. Jenkins, J.Y.-C. Sun, J. Gautier, “Characteristics of SOI FET's under pulsed conditions,” IEEE Transactions on Electron Devices, vol. 44, pp. 1923–1930, November 1997.
[2-18] J. H. Sim, S. C. Song, P. D. Kirsch, C. D. Young, R. Choi, D. L. Kwong, B. H. Lee, G. Bersuker, “ Effects of ALD HfO2 thickness on charge trapping and mobility, ” Microelectric Engineering, vol. 80, pp 218–221, June 2005.
[2-19] Agilent B1500A/B1530A Waveform Generator/Fast Measurement Unit user`s guide, Agilent Technologies, (2009).
Chapter 4
[4-1] C. H. Dai, T. C. Chang, A. K. Chu, Y. J. Kuo, F. Y. Jian, W. H. Lo, S. H. Ho, C. E. Chen, J. M. Shih, W. L. Chung, Guangrui Xia, Osbert Cheng, and C. T. Huang, “On the Origin of Gate-Induced Floating Body Effect in PD SOI p-MOSFETs,” IEEE Trans. Electron Devices Letters, vol. 32, pp. 847–849, July 2011.
[4-2] W. C. Lee and C. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling,” IEEE Trans. Electron Devices, vol. 48, pp. 1366–1373, July 2001.
[4-3] J. W. Yang, J. G. Fossum, G. O. Workman, C. L. Huang, “A physical model for gate-to-body tunneling current and its effects on floating-body PD/SOI CMOS devices and circuits,” Solid-State Electronics, vol. 48, pp. 259–270, February 2004.
[4-4] K. F. Schuegraf and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices, vol. 41, pp. 761–767, May 1994.
[4-5] T. Guillaume, and M. Mouis, “Calculations of hole mass [110]-uniaxially strained silicon for the stress-engineering of p-MOS transistors,” Solid-State Electronics, vol. 50, pp. 701–708, April 2006.
[4-6] M. A. Alam, S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,” Microelectronics Reliability, vol. 45, pp. 71–81, January 2005.
[4-7] T. Irisawa, T. Numata, E. Toyoda, N. Hirashita, T. Tezuka, N. Sugiyama, and S. I. Takagi, “Physical Understanding of Strain-Induced Modulation of Gate Oxide Reliabolity in MOSFETs,” IEEE Trans. Electron Devices, vol. 55, pp. 3159–3166, November 2008.
[4-8] W. C. Lee, T. J. King, and C.Hu, “Evidence of Hole Direct Tunneling Through Ultrathin Gate Oxide Using P+ Poly-SiGe Gate,” IEEE Trans. Electron Devices Letters, vol. 20, pp. 268–270, June 1999.
[4-9] Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., vol.101, p. 104503, March 2007.
[4-10] R. Mishra, S. Mitra, R. Gauthier, D. E. Ioannou, C. Seguin and R. Halbach, “ Concurrent HCI-NBTI:worst case degradationcondition for 65nm p-channel SOI MOSFETs,” Microelectric Engineering, vol. 84, pp. 2085–2088, May 2007.
[4-11] K. A. Jenkins, J.Y.-C. Sun, J. Gautier, “Characteristics of SOI FET's under pulsed conditions,” IEEE Transactions on Electron Devices, vol. 44, pp. 1923–1930, November 1997.
[4-12] J. H. Sim, S. C. Song, P. D. Kirsch, C. D. Young, R. Choi, D. L. Kwong, B. H. Lee, G. Bersuker, “ Effects of ALD HfO2 thickness on charge trapping and mobility, “ Microelectric Engineering, vol.80, pp. 218–221, June 2005.
[4-13] S. T. Liu, D. E. Ioannou, D.P. Ioannou, M. Flanery and H. L. Hughes, “NBTI in SOI p-Channel MOS Field Effect Transistors, “ IEEE IIRW, October 2005.
[4-14] D.P. Ioannou, R. Mishra, D. E. Ioannou, S. T. Liu and H. L. Hughes, “ Worst case stress conditions for hot carrier induced degradation of p-channel SOI MOSFETs,” Solid-State Electronics, vol. 50, pp. 929–934, June 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.15.112.69
論文開放下載的時間是 校外不公開

Your IP address is 52.15.112.69
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code