Responsive image
博碩士論文 etd-0726111-030802 詳細資訊
Title page for etd-0726111-030802
論文名稱
Title
模版法製備孔洞碳材及其活化後之結構分析
Synthesis and Structural Analyses of Activated Porous Carbon Derived from Silica Template
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-27
繳交日期
Date of Submission
2011-07-26
關鍵字
Keywords
糠醛、間二苯酚、化學活化、孔洞碳材、二氧化矽球
Furfural, Porous carbon, Resorcinol, Silica spheres, Chemical activation
統計
Statistics
本論文已被瀏覽 5715 次,被下載 9
The thesis/dissertation has been browsed 5715 times, has been downloaded 9 times.
中文摘要
本實驗製備出粒徑為58.04 ± 14.12 nm及73.75 ± 6.72 nm的均勻尺寸分布SiO2球體,並採用SiO2球體製備三維模版,製程是利用不鏽鋼模具將SiO2球以10 MPa的壓力壓成錠狀,優點是費時短且可形成緊密排列的球體模版。選用糠醛-間二苯酚(Furfural-Resorcinol)樹脂做為碳材前驅物,以自然滲入的方式注入模版間隙中,並在鈍氣(N2)環境下高溫裂解後以HF移除SiO2模板得到孔洞碳材。因為活性化雙孔徑孔洞碳材比起傳統粉體碳材料具有更高的比表面積,基於此特性使活性化雙孔徑孔洞碳材被廣泛應用。後續的KOH化學活化程序,目的是為了在孔洞碳材孔壁上蝕刻出微孔洞(diameter < 2 nm),使其成為同時具有巨孔洞及微孔洞之雙孔徑孔洞碳材。
糠醛-間二苯酚樹脂較適合的聚合比例在2.0~3.0之間,在此範圍內殘碳率均在51 %以上,其中以F/R值2.0與3.0時的殘碳率為最高,偏離F/R值2.0~3.0太多的樹脂殘碳率較低。x-ray繞射結果,糠醛-間二苯酚樹脂碳化後的結晶程度低,其(002)面晶格間距約0.373 nm較石墨的0.339 nm來得大,晶格間距增大導致繞射峰往低角度偏移。Raman光譜分析結果,石墨的ID/IG值約介於0.1-0.3之間,糠醛-間二苯酚樹脂碳化後的ID/IG值約落在1.7-1.8之間,屬於較非結晶的碳材結構。活化前的孔洞碳材擁有複製球體模版型態的互通式孔洞結構,孔徑為56 nm屬巨孔洞級距,其氮氣吸脫附等溫曲線歸類為Type IV中的H1遲滯曲線,因為巨孔洞的開口較大,氮氣在吸附及脫附的行為上差異較小。雖然KOH濃度由0.18增至2.67 M,但活化後的巨孔洞碳材依然保有互通式的孔洞型態,由SEM可觀察到沒有孔壁塌陷的現象卻有孔壁明顯變薄的情況。根據氮氣吸脫附的量測,本實驗製備的巨孔洞碳材孔洞容積約2.23 cm3/g,活化後的碳材較活化前有更多微孔洞存在,形成巨孔-微孔雙孔徑孔洞碳材,比表面積也因微孔洞而有所提升(658 m2/g至1404 m2/g)。
Abstract
This research mainly includes two parts. First, monodispersed silica spheres with diameter about 58 and 73 nm were successfully synthesized. The tablet-like silica template could be made using a stainless steel mold by pressing the mold with a pressure ~ 10 MPa. The advantage of this molding process is it takes only a short time to accomplish the total fabrication. Second, infiltration of the carbon precursor was done using the monomers resorcinol (R) and furfural (F) in the interval of tablet-like silica template, and then polymerization and drying. It was subsequently carbonized in N2 atmosphere at 800 ℃ and then the silica template was removed by 20 wt % HF solution. The activated porous carbon material has larger specific surface area than the traditional powder carbon material. The chemical activation process by KOH plays a vital role in raising the specific surface area, since the KOH would etch the carbon pore surface to produce a large number of micropores (diameter < 2 nm), forming a macro-micro or meso-micro porous carbon materials.
The F/R molar ratios for polymerization between 2.0 to 3.0 were applied and the carbon yields of these resins were higher than 51% in this range. An F/R ratio below 2.0 or 3.0 gave a lower carbon yield when carbonization at 800 ℃. X-ray diffraction analyses on the macroporous carbon materials indicate a semi-crystalline structure which belong to the hexagonal crystal system with (002) d-spacing of = 0.373 nm, which is larger than the 0.339 nm of graphite. In Raman spectra analysis, the integral area of D-peak (ID) and G-peak (IG) is an index to define the degree of graphitization. The ratios ID/IG of lie between 1.7 - 1.8, which are larger than that of graphite (ID/IG = 0.1 - 0.3), so the FR series macroporous carbon is mostly amorphous and is far from highly crystallized structure. The un-activated macroporous carbon materials has open pore structure, the pore diameter is 56 nm which is classified to the macroporous scale.
The nitrogen adsorption/desorption isotherm of the porous carbon materials belongs to the type IV, with H1 type hysteresis. The BET results show that the specific surface area increases with increasing KOH concentration; whereas the open pore structure remain the same. SEM observations reveal the pore structure doesn’t collapse but the pore wall does become thinner. From this work, macroporous carbon materials with total pore volume as high as 2.23 cm3/g and the specific surface area as high as 658 m2/g have successfully been synthesized. Activation by KOH creates more micropores on its carbon walls, resulting in a macro-microporous carbon material having two scales of pores in the same time and with a high surface area of 1404 m2/g.
目次 Table of Contents
學位論文審定書............................................................................................................. i
摘要............................................................................................................................... ii
Abstract ........................................................................................................................ iii
總目錄............................................................................................................................ v
圖目錄........................................................................................................................ viii
表目錄.......................................................................................................................... xii
第一章、緒論................................................................................................................ 1
1-1 前言 .............................................................................................................. 1
1-2 研究動機 ...................................................................................................... 1
第二章、文獻回顧........................................................................................................ 3
2-1 孔洞材料簡介 .............................................................................................. 3
2-2 模板導向合成法 .......................................................................................... 4
2-3 溶膠-凝膠(sol-gel processing)反應原理 ..................................................... 5
2-4 酚醛樹脂(phenolic resin)簡介 ..................................................................... 6
2-5 液晶模版與球體模版 .................................................................................. 7
2-6 以AR-Pitch 製備中孔洞碳材 ................................................................... 10
2-7 酚醛莫耳比例對碳材結構的影響 ............................................................ 12
2-8 間二苯酚-糠醛樹脂的反應簡述 ............................................................... 13
2-9 雙孔徑孔洞碳材(micro-mesoporous carbons) .......................................... 18
2-10 碳化溫度對孔洞碳材結構的影響 .......................................................... 22
2-11 高孔洞容積碳材 ...................................................................................... 24
vi
第三章、實驗部分...................................................................................................... 26
3-1 實驗藥品 .................................................................................................... 26
3-2 實驗方法與流程 ........................................................................................ 27
3-2-1 合成單一尺寸二氧化矽球 ............................................................. 27
3-2-2 壓製二氧化矽球模版 ..................................................................... 28
3-2-3 以糠醛與間二苯酚製備中孔洞碳材 ............................................. 28
3-2-4 以KOH活化孔洞碳材 .................................................................. 29
3-3 儀器量測 .................................................................................................... 31
3-3-1 X-ray繞射儀(SIEMENS D5000 XRD) ......................................... 31
3-3-2 掃描式電子顯微鏡(JSM-6330TF-SEM) ....................................... 31
3-3-3 Raman Spectroscopy (JOBIN-YVON T64000) .............................. 32
3-3-4 Nitrogen adsorption/desorption analysis ......................................... 32
第四章 結果討論...................................................................................................... 35
4-1 單一尺寸二氧化矽球 ................................................................................ 35
4-1-1 合成直徑約73 nm 之二氧化矽球 ................................................. 35
4-1-2 合成直徑約58 nm 之二氧化矽球 ................................................. 37
4-2 FR 樹脂之碳化含碳量分析 ...................................................................... 40
4-2-1 理論含碳量 ..................................................................................... 40
4-2-2 實際含碳量 ..................................................................................... 41
4-2-3 TGA (Thermal Gravimetric Analysis)............................................. 42
4-3 孔洞碳材微觀結構觀測-SEM ................................................................... 44
4-3-1 移除模版後的孔洞型貌(73 nm template, M/P=2/5) ..................... 44
4-3-2 移除模版後的孔洞型貌(58 nm template, M/P=2/5) ..................... 48
4-3-3 移除模版後的孔洞型貌(58 nm template, M/P=5/5) ..................... 51
4-4 X-ray繞射分析 .......................................................................................... 52
4-5 Raman 光譜分析 ........................................................................................ 54
vii
4-6 KOH活化孔洞碳材................................................................................... 58
4-6-1 不同KOH濃度的活化殘碳率 ...................................................... 58
4-6-2 孔洞碳材活化後之微觀結構觀測-SEM ....................................... 60
4-7 氮氣吸脫附分析 ........................................................................................ 61
4-8 F/R 莫耳比例對碳材結構的影響 ............................................................. 64
4-8-1 表面形貌觀測-SEM ....................................................................... 64
4-8-2 微結構鑑定 ..................................................................................... 64
4-8-3 F/R 莫耳比例對殘碳率之影響 ...................................................... 65
4-8-4 小結 ................................................................................................. 66
4-9 不同KOH活化濃度對碳材結構的影響.................................................. 67
4-9-1 表面形貌觀測-SEM ....................................................................... 67
4-9-2 微孔洞的形成 ................................................................................. 67
4-9-3 小結 ................................................................................................. 68
第五章 結論.............................................................................................................. 69
參考文獻...................................................................................................................... 71
附錄A IUPAC 定義的吸脫附曲線及遲滯曲線類型 ............................................. 75
參考文獻 References
[1] C.D. Liang, Z.J. Li, and S. Dai, Angew. Chem. Int. Ed., 47 (2008) 3696-3717.
[2] L.H. Kao, T.C. Hsu, Mater. Lett., 62 (2008) 695-698.
[3] J.W. Lee, J.Y. Kim, T.H. Hyeon, Adv. Mater., 18 (2006) 2073-2094.
[4] A.S. Sinitskii, A.V. Knotko, Yu. D. Tret’yakov, Inorg. Mater., 41 (2005) 1178-1184.
[5] Y.N. Fu, Z.G. Jin, G.Q. Liu, Y.X. Yin, Synth. Metals., 159 (2009) 1744-1750.
[6] W. Stober, A. Fink, J.Colloid Interface Sci., 26 (1968) 62-69.
[7] Y.N. Fu, Z.G. Jin, W.J. Xue, Z.P. Ge, J. Am. Ceram. Soc., 91 (2008) 2676-2682.
[8] M.S. Halper, J.C. Ellenbogen, (2006). Supercapacitors: A Brief Overview”, USA, MITRE Corporation.
[9] Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater., 10 (2000) 693-713.
[10] D.V. Orlin, A.M. Lenhoff, Curr. Opin. Colloid Interface Sci., 5 (2000) 56-63.
[11] B.E. Conway,“Transition from supercapacitor to battery behavior in elec-trochemical energy storage”, J. Electrochem. Soc., 138 (1991) 1539-1548.
[12] V.N. Obreja, Physica E, 40 (2008) 2596-2605.
[13] K.P. Gierszal, M. Jaroniec, J. Phys. Chem. C, 111 (2007) 9742-9748.
[14] A. Stein , R.C. Schroden, Curr. Opin. Solid State Mater. Sci., 5 (2001) 553-564.
[15] K. Nakagawa, S.R. Mukai, K. Tamura, H. Tamon, Chem. Eng. Res. Des., 85 (2007) 1331-1337.
[16] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science, 279 (1998) 548-552.
[17] J. Jin, S. Tanaka, Y. Egashira, N. Nishiyama, Carbon, 48 (2010) 1985.
[18] Y.S. Tao, M. Endo, K. Kaneko, Recent Patents on Chemical Engineering, 1 (2008) 192-200.
[19] R.B. Durairaj, (2005). Resorcinol : Chemistry, Technology and Applications, New York, Springer Berlin Heidelberg.
[20] R.W. Pekala, D.W. Schaefer, Macromolecules., 26 (1993) 5487-5493.
[21] P. Behrens, Adv. Mater., 5 (1993) 127-132.
[22] J.P. Hoogenboom, D. Derks, P. Vergeer, A. Blaaderen, J. Chem. Phys., 117 (2002) 11320-11328.
[23] C.J. Brink, W. Scherer, (1990). The Physics and Chemistry of Sol-Gel pro-cessing, San Diego, Harcourt Brace Jovanovich Publishers.
[24] L.C. Klein, (1994). Sol-Gel Optics Processing and Applications”, Boston, Kluwer Academic Publishers.
[25] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. –W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 114 (1992) 10834-10843.
[26] A.H. Sayari, P. Liu, Microporous Mater., 12 (1997) 149-177.
[27] A. Eksilioglu, N. Gencay, M.F. Yardim, E. Ekinci, J. Mater. Sci., 41(2006) 2743-2748.
[28] R.W. Pekala et al., J.Non-Cryst.Solids, 188 (1995) 34-40.
[29] A. Shindo, K. Izumino, Carbon, 32 (1994) 1233-1243.
[30] M. Jaroniec, J. Choma, J. Gorka, A.S. Zawislak, Chem. Mater., 20 (2008) 1069-1075.
[31] C. Jerzy, G. Joanna, J.N. Mietek, Z. Aleksandra, Top. Catal., 53 (2010) 283-290.
[32] S.B. Yoon, G.S. Chai, S.K. Kang, Jong-Sung Yu, K.P. Gierszal, Mietek Jaroniec, J. Am. Chem. Soc., 127 (2005) 4188-4189.
[33] T. Otowa, Y. Nojima and T. Miyazaki, Carbon., 35 (1997) 1315-1319.
[34] M.J. Mufioz-Guillena, M.J. Illan-Gomez, J.M. Martin-Martinez, A. Lina-res-Solano, C. Salinas-Martinez de Lecea, Energy Fuels, 6 (1992) 9-15.
[35] M.J. Illan-Gomez, A. Garcia-Garcia, C. Salinas-Martinez de Lecea, A. Li-nares-Solano, Energy Fuels, 10 (1996) 1108-1114.
[36] B. Serrano-Talavera, M.J. Munoz-Guillena, A. Linares-Solano, C. Salin-as-Martinez de Lecea, Energy Fuels, 11 (1997) 785-791.
[37] S.H. Yoon, S.Y. Lim, Yan Song, Y.O. Ota, W. Qiao, Atsushi Tanaka, Isao Mochida, Carbon, 42 (2004) 1723-1729.
[38] R.W. Fu, L. Liu, W.Q. Huang, P.C. Sun, J. App. Polym. Sci., 87, (2003) 2253-2261.
[39] B.J. Kim, Y.S. Lee, S.J. Park, J. Colloid Interface Sci., 306 (2007) 454-458.
[40] D. Lozano-Castello, M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Lina-res-Solano, Carbon, 39 (2001) 741-749.
[41] V. Barranco, M.A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez, F. Agullo-Rueda, J.M. Amarilla, J.M. Rojo, J. Phys. Chem. C, 114 (2010) 10302-10307.
[42] H.Y. Tiana, C.E. Buckleya, S.B. Wangc, M.F. Zhou, Carbon, 47 (2009) 2112-2142.
[43] B.D. Cullity, S.R. Stock, (2001). Elements of X-Ray Diffraction, Prentice Hall.
[44] IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, pp.578 (1972).
[45] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 309-319.
[46] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc., 73 (1951) 373-380.
[47] H.Y. Zheng, (2009). Synthesis and Structural Analysis of Ordered Mesopo-rous Carbon via Colloidal Template, NSYSU, MOES.
[48] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, J. Appl. Phys., 80 (1996) 440-447.
[49] K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cancado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett., 427 (2006) 117-121.
[50] F. Tuinstra, J.L. Koenig, J.Chem. Phys., 53 (1969) 3-7.
[51] M.A. Lillo-Rodenas, J. Juan-Juan, D. Cazorla-Amoros, A. Linares-Solano, Carbon, 42 (2004) 1371-1375.
[52] M.F. Grenier-Loustalot, S. Larroque, P. Grenier, Polymer, 35 (1994) 3046-3054.
[53] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, pure Appl. Chem., 57 (1985) 603-619.
[54] J.M. Laza, J.L. Vilas, M. Rodriaguez, M.T. Garay, F. Mijangos, L.M. Leoan, J. Appl. Polym. Sci., 83 (2002) 57-65.
[55] Y.N. Fu, Z.G. Jin, W.J. Xue, Z.P. Ge, J. Am. Ceram. Soc., 91 (2008) 2676-2682.
[56] K.P. Gierszal, M. Jaroniec, J. Am. Chem. Soc., 128 (2006) 10026-10027.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.152.98
論文開放下載的時間是 校外不公開

Your IP address is 3.145.152.98
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code