Responsive image
博碩士論文 etd-0726111-141617 詳細資訊
Title page for etd-0726111-141617
論文名稱
Title
四種不同食性動物腸道微生物之菌相分析
Bacterial diversity in the gastrointestinal tracts of four animals with different feeding habits
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-23
繳交日期
Date of Submission
2011-07-26
關鍵字
Keywords
PCR-DGGE、細菌多樣性、食性、腸道微生物
feeding habit, gastrointestinal tract microbiota ( GI tract microbiota ), bacterial diversity, denaturing gradient gel electrophoresis ( DGGE )
統計
Statistics
本論文已被瀏覽 5669 次,被下載 4423
The thesis/dissertation has been browsed 5669 times, has been downloaded 4423 times.
中文摘要
動物的物種及食性差異會影響其腸道微生物菌相之組成,而腸道微生物在宿主健康及營養提供上亦扮演了極重要的角色。本研究旨在利用PCR-DGGE技術及DNA定序分析探討壽山動物園內四種不同食性(肉食、雜食、草食反芻及非反芻)動物其腸道微生物菌相組成及其相關菌種對宿主之影響。結果顯示四種不同食性動物菌相構成有顯著差異,菌相豐富度由肉食性至雜食性至草食性逐漸增加,亦發現四種動物中其腸道微生物菌相,以肉食動物菌相與其他動物菌相差異性最大,其次為雜食性動物,而草食性動物不論會反芻與否,彼此菌相的差異性最小。長時間觀察顯示,四種不同食性動物其腸道微生物菌相構成大致穩定,且在不同時間點中,相同物種但不同個體之間其菌相差異不大,顯示外在環境條件雖會影響動物腸道微生物菌相,但宿主物種及食性差異仍是影響腸道微生物菌相組成之主因。另外發現四種不同食性動物鑑定菌種主要皆以Firmicutes門為主,其他菌門皆佔少數,其中Bacteroidetes門的比例遠低於Firmicutes,與人類腸道微生物組成有所差異,推測與動物園內餵食飼料中含較高比例之澱粉類有關。鑑定菌種結果顯示四種不同食性動物皆有大量降解各類碳水化合物、脂類、蛋白質之相關菌種;除肉食性動物中未鑑定到可分解纖維素之Fibrobacteres菌種外,草食性及雜食性動物皆有,顯示腸道微生物確實有協助養份消化及能量代謝的功能。
Abstract
The animal phylogeny and feeding habits would affect the composition of gastrointestinal tract(GI tract)microbiota. GI tract microbiota plays an important role in host health and nutrient provision. In this study, we used PCR-DGGE and bacterial 16S rDNA sequencing to analyze the GI tract bacterial diversity of four animals with different feeding habits in Shou-Shan zoo, including one carnivore, one omnivore and two herbivores, in which one ruminant and one non-ruminant. The results show a great difference between GI tract bacterial diversity of the four animals. The abundance of GI tract bacterial diversity increased from carnivore, omnivore to herbivore. Comparing the similarity of the GI tract bacterial community structures of these four animals, the carnivore possessed the most different composition, to other animals, the next was the omnivore, while the two herbivores show the highest similarity to each other. Our results also indicated that the GI tract microbiota of these four different animals were very stable during the investigating period. We also found that two individuals of the same species had a very similar bacterial compositions in their GI tracts at different time point. This finding indicated that the bacterial compositions of GI tract in the four animals were affected mostly by the host phylogeny and their feeding habits. Moreover, according to bacterial 16S rDNA sequencing and idencification, results show that the Firmicutes were the dominant bacterial phyum in all four animals GI tracts, the amount of Bacteroides was much less than Firmicutes. This result might caused by the highly starch content in their feed. Large amount of carbohydrate-degrading, protein-degrading, lipid-degrading bacteria were found in all of these different animals. Fiber-degrading bacteria Fibrobacteres were identified in the GI tracts of the herbivores and omnivore, but not the carnivore, showing that GI tract microbiota plays an important role to provide nutrient and assist energy to the host.
目次 Table of Contents
摘要...............................................................................................................................I
第一章 前言................................................................................................................1
1.1 腸道微生物.........................................................................................................1
1.1.1 影響腸道微生物菌相的因素......................................................................2
1.1.1.1 飲食.......................................................................................................2
1.1.1.2 年齡.......................................................................................................3
1.1.2 腸道微生物對宿主的影響..........................................................................4
1.1.2.1 養份提供及能量代謝............................................................................4
1.1.2.1.1 碳水化合物....................................................................................5
1.1.2.1.2 脂質................................................................................................7
1.1.2.1.3 蛋白質............................................................................................9
1.1.2.1.4 維生素..........................................................................................10
1.1.2.2 其他.....................................................................................................11
1.1.3 腸道微生物與糞便微生物之差異............................................................12
1.2 動物消化道構造差異對腸道微生物之影響....................................................12
1.2.1 肉食性及雜食性動物消化道構造差異對腸道微生物之影響………..13
1.2.2 草食性動物消化道構造差異對腸道微生物之影響…………………..13
1.3 壽山動物園四種不同食性動物.......................................................................14
1.4 腸道微生物多樣性研究...................................................................................15
1.4.1 從傳統培養技術到分子生物分析............................................................15
1.4.2 16S rDNA 序列........................................................................................16
1.4.3 DGGE 原理..............................................................................................17
1.4.4 PCR-DGGE 技術………………………………………...……………..18
1.5 研究目的...........................................................................................................18
第二章 實驗材料與方法..........................................................................................20
2.1 採集樣本.........................................................................................................20
2.2 DNA extraction................................................................................................20
2.3 PCR.................................................................................................................21
2.3.1 用於DGGE 之反應條件.........................................................................21
2.3.2 用於clone library 欲ligation 之反應條件...............................................22
2.3.3 用於DGGE 單一或小範圍條帶切膠純化後欲ligation 之反應條件…23
2.3.4 用於cloning 藍白篩篩選之反應條件.....................................................23
2.3.5 用於cloning 刪除重複band 之反應條件................................................24
2.3.6 電泳確認..................................................................................................24
vi
2.4 DGGE..............................................................................................................24
2.4.1 DGGE 架設膠台......................................................................................25
2.4.2 DGGE 配製膠片......................................................................................25
2.4.3 DGGE 樣本注入及條件設定..................................................................26
2.5 Cloning and sequencing..................................................................................27
2.5.1 agarose 切膠及純化.................................................................................28
2.5.2 DGGE 單一或小範圍條帶切膠純化......................................................29
2.5.3 Ligation....................................................................................................30
2.5.4 Transformation.........................................................................................30
2.5.5 clone 菌株確認及篩選.............................................................................31
2.5.6 定序鑑定比對..........................................................................................31
第三章 結果與討論..................................................................................................32
3.1 四種不同食性動物腸道微生物DGGE 菌相分析.............................................32
3.2 相同物種不同個體腸道微生物菌相之比較與分析.........................................34
3.3 菌種定序結果.....................................................................................................35
3.4 四種不同食性動物鑑定菌種比較.....................................................................36
3.5 鑑定菌種之生理代謝特性.................................................................................37
3.5.1 碳水化合物代謝..........................................................................................38
3.5.2 脂質代謝......................................................................................................39
3.5.3 蛋白質代謝..................................................................................................40
3.5.4 其他..............................................................................................................41
3.6 動物腸道微生物菌相在時間變化上的分析.....................................................42
3.6.1 孟加拉虎DGGE 時間變化圖及菌種鑑定圖.............................................42
3.6.2 台灣獼猴DGGE 時間變化圖及菌種鑑定圖.............................................44
3.6.3 單峰駱駝DGGE 時間變化圖及菌種鑑定圖.............................................45
3.6.4 查普曼斑馬DGGE 時間變化圖及菌種鑑定圖..........................................46
第四章 結論..............................................................................................................48
參考文獻......................................................................................................................50
圖表..............................................................................................................................63
附錄..............................................................................................................................78
參考文獻 References
Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787

Alam, M., Midtvedt, T., and Uribe, A. (1994) Differential cell-kinetics in the ileum and colon of germ-free rats. Scandinavian Journal of Gastroenterology 29: 445-451.

Molec Aminov, R. I., Walker, A. W., Duncan, S. H., Harmsen, H. J. M., Welling,G. W., and Flint, H. J. (2006) ular Diversity, Cultivation, and Improved Detection by Fluorescent In Situ Hybridization of a Dominant Group of Human Gut Bacteria Related to Roseburia spp. or Eubacterium rectale. Applied and Environmental Microbiology 9: 6371-6376.

Bach, A., S. Calsamiglia, and M. D. Stern. 2004. Nitrogen metabolism in the rumen. J. Dairy Sci. 88(E Suppl.):E9-E21.

Barcenilla, A., Pryde, S.E., Martin, J.C., Duncan, S.H., Stewart, C.S., Henderson, C., and Flint, H.J. (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Applied and Environmental Microbiology 66: 1654-1661.

Bentley, R., and Meganathan, R. (1982) Biosynthesis of vitamin-k (menaquinone) in bacteria. Microbiological Reviews 46: 241-280.

Bergman, E.N. (1990) Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiological Reviews 70: 567-590.

Bik, E.M. (2009) Composition and function of the human-associated microbiota. Nutrition Reviews 67: S164-S171.

Boekhorst, J., Siezen, R.J., Zwahlen, M.C., Vilanova, D., Pridmore, R.D., Mercenier, A. et al. (2004) The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology-Sgm 150: 3601-3611.

Cebra, J.J. (1999) Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition 69: 1046S-1051S.

Chien, A., Edgar, D.B., and Trela, J.M. (1976) Deoxyribonucleic-acid polymerase from extreme thermophile thermus-aquaticus. Journal of Bacteriology 127: 1550-1557.

Collins, M.D., and Gibson, G.R. (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. American Journal of Clinical Nutrition 69: 1052S-1057S.

Corthésy, B., Gaskins, H. R., and Mercenier, A. (2007) Cross-Talk between Probiotic Bacteria and the Host Immune System. The Journal of nutrition 3: 781S-790S.

Cotta, M., and Forster, R.. (2006) The Family Lachnospiraceae, Including the Genera Butyrivibrio, Lachnospira and Roseburia. The Prokaryotes 4: 1002-1021.

Crociani, F., Biavati, B., Alessandrini, A., Chiarini, C., and Scardovi, V. (1996) Bifidobacterium inopinatum sp nov and Bifidobacterium denticolens sp nov, two new species isolated from human dental caries. International Journal of Systematic Bacteriology 46: 564-571.

Dawson, R.M.C., Hemington, N., and Hazlewood, G.P. (1977) Role of higher plant and microbial lipases in ruminal hydrolysis of grass lipids. British Journal of Nutrition 38: 225-232.

de Vrese, M., and Schrezenmeir, J. (2008) Probiotics, Prebiotics, and Synbiotics. In Food Biotechnology. Berlin: Springer-Verlag Berlin, pp. 1-66.

Devillard, E., Goodheart, B. D., Karnati, K. R. S., Bayer, A. E., Lamed, R., Miron, J., Nelson, E. K., and Morrison, M. (2004) Ruminococcus albus 8 Mutants Defective in Cellulose Degradation Are Deficient in Two Processive Endocellulases, Cel48A and Cel9B, Both of Which Possess a Novel Modular Architecture. Journal of Bacteriology 186: 136-145.

Duncan, S.H., Hold, G.L., Barcenilla, A., Stewart, C.S., and Flint, H.J. (2002) Roseburia intestinalis sp nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. International Journal of Systematic and Evolutionary Microbiology 52: 1615-1620.

Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M. et al. (2005) Diversity of the human intestinal microbial flora. Science 308: 1635-1638.

Engberg, J., On, S.L.W., Harrington, C.S., and Gerner-Smidt, P. (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. Journal of Clinical Microbiology 38: 286-291.

Eschenmoser, A., and Wintner, C.E. (1977) Natural product synthesis and vitamin-b12. Science 196: 1410-1426.

Evans, D.F. (1998) Physicochemical environment of the colon. European Journal of Cancer Prevention 7: S79-S80.

Freier, T. A., Beitz, D. C., Li, L., and Hartman, P. A. (1994) Characterization of Eubacterium coprostanoligenes sp. nov., a Cholesterol-Reducing Anaerobe. International Journal of Systematic and Evolutionary Microbiology 1: 137-142


Finegold, S.M., Attebery, H.R., and Sutter, V.L. (1974) Effect of diet on human fecal flora - comparison of japanese and american diets. American Journal of Clinical Nutrition 27: 1456-1469.

Finegold, S.M., Sutter, V.L., Sugihara, P.T., Elder, H.A., Lehmann, S.M., and Phillips, R.L. (1977) Fecal microbial-flora in 7th-day-adventist populations and control subjects. American Journal of Clinical Nutrition 30: 1781-1792.

Fischer, S.G., and Lerman, L.S. (1979) Length-independent separation of dna restriction fragments in 2-dimensional gel-electrophoresis. Cell 16: 191-200.

Flint, H.J., Duncan, S.H., Scott, K.P., and Louis, P. (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology 9: 1101-1111.

Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology 6: 121-131.

Gaggia, F., Mattarelli, P., and Biavati, B. (2010) Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology 141: S15-S28.

Gibson, P.R., Moeller, I., Kagelari, O., Folino, M., and Young, G.P. (1992) Contrasting effects of butyrate on the expression of phenotypic markers of differentiation in neoplastic and nonneoplastic colonic epithelial-cells invitro. Journal of Gastroenterology and Hepatology 7: 165-172.

Gorissen, L., Raes, K., Weckx, S., Dannenberger, D., Leroy, F., De Vuyst, L., and De Smet, S. (2010) Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Applied Microbiology and Biotechnology 87: 2257-2266.

Guarner, F., and Malagelada, J.R. (2003) Gut flora in health and disease. Lancet 361: 512-519.

Hague, A., Singh, B., and Paraskeva, C. (1997) Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology 112: 1036-1040.
Hayashi, H., Sakamoto, M., and Benno, Y. (2002) Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiology and Immunology 46: 819-831.

Hespell, R.B., Wolf, R., and Bothast, R.J. (1987) Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Applied and Environmental Microbiology 53: 2849-2853.

Hoskins, J., Alborn, W.E., Arnold, J., Blaszczak, L.C., Burgett, S., DeHoff, B.S. et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. Journal of Bacteriology 183: 5709-5717.

Jenkins, T.C., Wallace, R.J., Moate, P.J., and Mosley, E.E. (2008) Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science 86: 397-412.

Jeong, H., Yi, H., Sekiguchi, Y., Muramatsu, M., Kamagata, Y., and Chun, J. (2004) Clostridium jejuense sp nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology 54: 1465-1468.

Kageyama, A., Benno, Y., and Nakase, T. (1999) Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. International Journal of Systematic Bacteriology 49: 1725-1732.

Kane, M.D., Brauman, A., and Breznak, J.A. (1991) Clostridium mayombei sp nov, an h-2/co-2 acetogenic bacterium from the gut of the african soil-feeding termite, cubitermes-speciosus. Archives of Microbiology 156: 99-104.

Kemp, P., White, R.W., and Lander, D.J. (1975) Hydrogenation of unsaturated fatty-acids by 5 bacterial isolates from sheep rumen, including a new species. Journal of General Microbiology 90: 100-114.

Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2001) Clostridium hiranonis sp nov., a human intestinal bacterium with bile acid 7 alpha-dehydroxylating activity. International Journal of Systematic and Evolutionary Microbiology 51: 39-44.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V. et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.

Lapierre, H., and G. E. Lobley. 2001. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 84 (E Suppl.):E223–E236.

Leahy, S.C., Kelly, W.J., Altermann, E., Ronimus, R.S., Yeoman, C.J., Pacheco, D.M. et al. (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. Plos One 5: 17.

Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. (2008a) Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6: 776-788.

Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005) Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 102: 11070-11075.

Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S. et al. (2008b) Evolution of mammals and their gut microbes. Science 320: 1647-1651.

Liu, C.X., Finegold, S.M., Song, Y.J., and Lawson, P.A. (2008) Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov and description of Blautia wexlerae sp nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 58: 1896-1902.

Mahowald, M.A., Rey, F.E., Seedorf, H., Turnbaugh, P.J., Fulton, R.S., Wollam, A. et al. (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America 106: 5859-5864.

Maia, M.R.G., Chaudhary, L.C., Figueres, L., and Wallace, R.J. (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 91: 303-314.

Manson, J.M., Rauch, M., and Gilmore, M.S. (2008) The commensal microbiology of the gastrointestinal tract. In Gi Microbiota and Regulation of the Immune System. Berlin: Springer-Verlag Berlin, pp. 15-28.

Marteau, P., Pochart, P., Dore, J., Bera-Maillet, C., Bernalier, A., and Corthier, G. (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Applied and Environmental Microbiology 67: 4939-4942.

Matthies, C., Evers, S., Ludwig, W., and Schink, B. (2000) Anaerovorax odorimutans gen. nov., sp nov., a putrescine-fermenting, strictly anaerobic bacterium. International Journal of Systematic and Evolutionary Microbiology 50: 1591-1594.

Meziti, A., Ramette, A., Mente, E., and Kormas, K. (2010) Temporal shifts of theNorway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiol. Ecol. 74: 472–484.

Montgomery, L., Flesher, B., and Stahl, D. (1988) Transfer of bacteroides succinogenes (hungate) to fibrobacter gen nov as fibrobacter succinogenes comb nov and description of fibrobacter intestinalis sp nov. International Journal of Systematic Bacteriology 38: 430-435.
Moore, W.E.C., and Moore, L.H. (1995) Intestinal floras of populations that have a high risk of colon cancer. Applied and Environmental Microbiology 61: 3202-3207.

Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T. et al. (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environmental Microbiology 72: 1027-1033.


Myers, R.M., Maniatis, T., and Lerman, L.S. (1987) Detection and localization of single base changes by denaturing gradient gel-electrophoresis. Methods in Enzymology 155: 501-527.

Naaber, P., Smidt, I., Stsepetova, J., Brilene, T., Annuk, H., and Mikelsaar, M. (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. Journal of Medical Microbiology 53: 551-554.

Nagai, F., Watanabe, Y., and Morotomi M. (2010) Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. Int. J. Syst. Evol. Microbiol. 60:2639-2646


Nakae, T., and Elliott, J.A. (1965) Volatile fatty acids produced by some lactic acid bacteria .i. Factors influencing production of volatile fatty acids from casein hydrolysate. Journal of Dairy Science 48: 287-&.

O’herrin, S.M., and Kenealy, W.R. (1993) Glucose and carbon-dioxide metabolism by succinivibrio dextrinosolvens. Applied and Environmental Microbiology 59: 748-755.

Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., and Brown, P.O. (2007) Development of the human infant intestinal microbiota. Plos Biology 5: 1556-1573.

Pariza, M.W., Park, Y., and Cook, M.E. (2001) The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research 40: 283-298.

Paster, B.J., Russell, J.B., Yang, C.M.J., Chow, J.M., Woese, C.R., and Tanner, R. (1993) Phylogeny of the ammonia-producing ruminal bacteria peptostreptococcus anaerobius, clostridium sticklandii, and clostridium aminophilum sp nov. International Journal of Systematic Bacteriology 43: 107-110.

Patterson, J.A., and Hespell, R.B. (1985) Glutamine-synthetase activity in the ruminal bacterium succinivibrio dextrinosolvens. Applied and Environmental Microbiology 50: 1014-1020.

Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I. et al. (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521.

Pereira, D.I.A., and Gibson, G.R. (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Applied and Environmental Microbiology 68: 4689-4693.



Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J. et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409: 529-533.

Pryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S., and Flint, H.J. (2002) The microbiology of butyrate formation in the human colon. Fems Microbiology Letters 217: 133-139.

Pukall, R., Lapidus, A., Nolan, M., Copeland, A., Del Rio, T.G., Lucas, S. et al. (2009) Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1(T)). Standards in Genomic Sciences 1: 234-241.

Reynolds, C. K., and N. B. Kristensen. 2008. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 86(E. Suppl.):E293- E305.

Riether, D., and Mulzer, J. (2003) Total synthesis of cobyric acid: Historical development and recent synthetic innovations. European Journal of Organic Chemistry: 30-45.

Rooney, A., Swezey, J. L., Pukall, R., Schumann, P., and Spring, S.(2010)
Peptoniphilus methioninivorax sp. nov., a novel Gram-positive anaerobic coccus isolated from retail ground beef. International Journal of Systematic and Evolutionary Microbiology.


Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., and Matteuzzi, D. (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Applied and Environmental Microbiology 71: 6150-6158.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T. et al. (1988) Primer-directed enzymatic amplification of dna with a thermostable dna-polymerase. Science 239: 487-491.

Samuel, B.S., Hansen, E.E., Manchester, J.K., Coutinho, P.M., Henrissat, B., Fulton, R. et al. (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences of the United States of America 104: 10643-10648.

Savage, D.C. (1977) Microbial ecology of gastrointestinal tract. Annual Review of Microbiology 31: 107-133.

Scanlan, P.D., and Marchesi, J.R. (2008) Micro eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture dependent and independent analysis of faeces. Isme Journal 2: 1183-1193.

Schlegel, L., Grimont, F., Collins, M. D., Cgnault, B. R., Grimont, P. A., and Bouvet, A. (2000) Streptococcus infantarius sp. nov., Streptococcus infantarius subsp. infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food. International Journal of Systematic and Evolutionary Microbiology 4: 1425-1434.

Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T. et al. (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America 99: 996-1001.

Sonnenburg, J.L., Xu, J., Leip, D.D., Chen, C.H., Westover, B.P., Weatherford, J. et al. (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307: 1955-1959.

Spera, R. V., Kaplan, M. H., Allen, S. L. (1992) CLOSTRIDIUM-SORDELLII BACTEREMIA - CASE-REPORT AND REVIEW. CLINICAL INFECTIOUS DISEASES 15: 950-954.

Staley, J.T., and Konopka, A. (1985) Measurement of insitu activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology 39: 321-346.

Tappenden, K.A., and Deutsch, A.S. (2007) The physiological relevance of the intestinal microbiota - Contributions to human health. Journal of the American College of Nutrition 26: 679S-683S.

Taras, D., Simmering, R., Collins, M.D., Lawson, P.A., and Blaut, M. (2002) Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 52: 423-428.

Thomas, P.C. (1973) Microbial protein synthesis. Proceedings of the Nutrition Society 32: 85-91.

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 1: 10.

Ueki, A., Akasaka, H., Suzuki, D., and Ueki, K. (2006) Paludibacter propionicigenes gen. nov., sp nov., a novel strictly anaerobic, Gram-negative, propionate producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. International Journal of Systematic and Evolutionary Microbiology 56: 39-44.

Vaughan, E. E., Schut, F., Heilig, H. G.H.J., Zoetendal, E. G., de Vos, W. M., and Akkermans, A. D. L. (2000) A Molecular View of the Intestinal Ecosystem. Curr. Issues Intest. Microbiol.1: 1-12.

Wade, W. (2002) Unculturable bacteria - the uncharacterized organisms that cause oral infections. Journal of the Royal Society of Medicine 95: 81-83.

Whitehead, T.R., Cotta, M.A., Collins, M.D., and Lawson, P.A. (2004) Hespellia stercorisuis gen. nov., sp nov and Hespellia porcina sp nov., isolated from swine manure storage pits. International Journal of Systematic and Evolutionary Microbiology 54: 241-245.

Widdel, F., and Pfennig, N. (1981) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Archives of Microbiology 129: 401-402.

Woese, C.R., and Fox, G.E. (1977) Phylogenetic structure of prokaryotic domain primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74: 5088-5090.

Wu, Z.T., and Yang, S.T. (2003) Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnology and Bioengineering 82: 93-102.

Zoetendal, E.G., Collier, C.T., Koike, S., Mackie, R.I., and Gaskins, H.R. (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. Journal of Nutrition 134: 465-472.






參考書籍

Prescott's principles of microbiology. Edited by Joanne M. Willey, Linda M. Sherwood, and Chris J. Woolverton. 2009

Eckert Animal Physiology, mechanisms and adaptations. 5th ed. Edited by D. Randall, W. Berggren, K. French. 2001
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code