Responsive image
博碩士論文 etd-0726111-230749 詳細資訊
Title page for etd-0726111-230749
論文名稱
Title
左手超穎材料負群延遲電路之設計與應用及複合右/左手架構之高選擇性濾波器
Design and Application of Left-Handed Metamaterial-Based Negative Group Delay Circuits and Filters with High Selectivity Based on Composite Right/Left-Handed Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-18
繳交日期
Date of Submission
2011-07-26
關鍵字
Keywords
左手材料、群延遲、負群延遲電路、複合右/左手、濾波器、高選擇性
Negative Group Delay Circuit (NGDC), Composite Right/Left-Handed (CRLH), Filter, High-Selectivity, Group Delay (GD), Metamaterial
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
在通訊系統中,群延遲變化會造成的訊號失真,導致錯誤率提升。而一般使用正群延遲的補償方式則會有傳播延遲,因此我們探討左手材料的負群延遲現象。經由分析零點極點對群延遲的影響,提出可切換正/負群延遲電路,並且以零點極點的概念設計可調式負群延遲電路,利用其產生的負群延遲來實現群延遲的等化,修復失真的時域訊號。
另外,由於通訊頻段是有限的,需要一高選擇性的濾波器讓可使用的頻寬能充分被利用,故我們將左手材料特性應用於濾波器設計來改善傳統微帶線高選擇性濾波器面積較大成本較高的問題。複合右手左手傳輸線在平衡條件下,可在不同的頻段分別呈現出右手及左手材料特性。故我們使用複合右手左手架構設計一窄頻帶通濾波器,其具有高選擇性、縮小化、低成本的優勢。
Abstract
In a communication system, the group delay variation (GDV) causes the distortion of signal and the degradation of symbol error rate. Usually, the compensation of group delay (GD) utilizing positive group delay (PGD) results in further propagation delay. Therefore, this research studies the negative group delay (NGD) behavior of metamaterial. Through analyzing the effects on GD caused by poles and zeros of circuit, the group delay circuit capable of switching between NGD and PGD is presented. Further, adjustable negative group delay circuits (NGDCs) are designed based on the concept of poles and zero. The NGD generated by NGDC is used to achieve the equalization of GD and recover the distorted signal in time domain.
Additionally, owing to the limited frequency band of communication, a filter with high selectivity is required to utilize the available bandwidth. The character of left-handed metamaterial is applied to the design of filter for reducing the size and cost of traditional microstrip line filters with high selectivity. Under the balanced condition, composite right/left-handed (CRLH) transmission line behaves right- and left- handed characteristics in different frequency bands. Thus, a coplanar waveguide (CPW) filter with high selectivity, size reduction and low cost is presented utilizing such a CRLH structure.
目次 Table of Contents
論文審定書.................................................................i
誌 謝........................................................................ii
中文摘要...................................................................iii
英文摘要...................................................................iv
第一章 序論..............................................................1
1.1研究背景與動機.............................................. ...1
1.2研究方法和目的.................................................1
1.3論文大綱.............................................................2
第二章 負群延遲及左手電路介紹..........................3
2.1左手材料介紹.....................................................3
2.2左手材料特性與應用.........................................6
2.3負群延遲補償.................................................. 13
2.4左手傳輸線等效電路與應用.......................... 15
第三章 可調式負群延遲電路.............................. 21
3.1群延遲分析與估算法...................................... 21
3.2可調式負群延遲單位電路設計...................... 23
3.3可切換正/負群延遲電路................................. 29
3.4 負群延遲電路應用於群延遲等化................. 32
3.5串接多段單位電路及大量群延遲補償.......... 36
第四章 高選擇性濾波器設計.............................. 39
4.1 複合右/左手電路架構.................................... 39
4.2 單位帶通共面波導設計................................. 41
4.3 高選擇性窄頻帶通濾波器............................. 43
4.4 實作量測與修正............................................. 45
4.5 相關文獻比較................................................. 48
第五章 結論...........................................................50
參考文獻............................................................... 52

參考文獻 References
[1] A. Azizzadeh and L. Mohammadi, “Degradation of BER by group delay in digital phase modulation,” Adv. Int.Conf. Telecomm., pp.350–354, 2008.
[2] A. Sanada, C. Caloz, and T. Itoh, “Novel zeroth-order resonance in composite right/left-handed transmission line resonators,” IEEE Asia-Pacific Microwave Conf., vol.3, pp. 1588–1592, Seoul, Korea, Nov. 2003.
[3] V. G. Veselago ,and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nature, vol. 5, pp.759–762, 2006.
[4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp.4184–4187, May 2000.
[5] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp.4773–4776, Jun. 1996.
[6] J. B. Pendry, “Low-frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter, 10, pp. 4785–4809, Mar. 1998.
[7] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2075–2083, Nov. 1999.
[8] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001.
[9] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp., vol. 47, pp. 509–514, 1968.
[10] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameters, capable of supporting backward waves,” Microw. Opt. Tech. Lett., vol. 31, pp. 129–133, 2001.
[11] R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E, vol. 64, p.056625, 2001.
[12] J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000.
[13] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett., vol. 89, no 21, pp. 213902-1–213902-4, Nov. 2002.
[14] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, pp. 977–980, 2006.
[15] M. Gil, J. Bonache, J. Garcia-Garcia,J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech., vol. 55, No. 6, pp. 1296–1304, June 2007.
[16] F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microw. Optical Tech. Lett., vol. 48, No. 11, pp.2171–2175, Nov. 2006.
[17] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., PRL 100, 207402 , May. 2008.
[18] W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J., vol. 1, no. 2, pp. 99–118, Aug. 2009.
[19] L. Brillouin, Wave Propagation and Group Velocity. Academic press, New York, 1960.
[20] J. Peatross, S. A. Glasgow, and M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett., vol. 84, p. 2370–2373, 2000.
[21] M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature, 425, pp. 695–698, 2003.
[22] A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A, vol. 63, no. 5, pp. 053 806+, Apr. 2001.
[23] G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia1, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E, vol. 63, no. 3, pp.036610+, 2001.
[24] J. F. Woodley and M. Mojahedi, “Negative group velocity and group delay in left-handed media,” Phys. Rev. E, vol. 70, pp.046603+, 2004.
[25] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science, vol. 312, pp. 892–894, 2006.
[26] D. Solli and R. Y. Chiao, “Superluminal effects and negative group delays in electronics and their applications,” Phys. Rev. E 66, pp.056601+, 2002.
[27] M. Kitano, T. Nakanishi, and K. Sugiyama, “Negative group delay and superluminal propagation : an electronic circuit approach,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no.1, pp. 43–51, 2003.
[28] O. F. Siddiqui, S. J. Erickson, G. V. Eleftheriades, and M. Mojahedi, “Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1449–1454, May 2004.
[29] B. Ravelo, A. Perennec, M. Le Roy, and Y.G. Boucher, “Active microwave circuit with negative group delay,” IEEE Microw. Wireless Compon. Lett., Issue 12, Nov. 17, pp. 861–863, Dec. 2007.
[30] Y. Jeong, H. Choi, and C.D. Kim, “Experimental verification for time advancement of negative group delay in RF electronic circuits,” IET Electron. Lett., Issue 4, vol. 46, no. 4, pp. 306–307, Feb. 2010.
[31] K. W. Suh, “A simplified analog group delay equalizer and its performance for point-to-point cochannel radio relay system applications,” Microw. Opt. Technol. Lett., vol. 30, pp. 397–400, 2001.
[32] B. Ravelo, A. Perennec, and M. Le Roy, “Experimental validation of the rc-interconnect effect equalization with negative group delay active circuit in planar hybrid technology,” IEEE workshop on Signal Propagation on Interconnects, May 2009.
[33] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004.
[34] M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas and Wireless Propag. Lett., vol. 2, no. 7, pp. 103–106, 2003.
[35] J. Zhang, S.W. Cheung, and T.I. Yuk, “Design of n-bit digital phase shifter using single CRLH TL unit cell,” IET Electron. Lett., vol. 46, no. 7, pp.506–507, Apr. 2010.
[36] I. -H. Lin, M. D. Vincentis, C. Caloz, and T. Itoh, ”Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1142–1149, Apr. 2004.
[37] P. -L. Chi, C. -J. Lee, and T. Itoh, “A compact dual-band metamaterial-based rat-race coupler for a MIMO system application,” 2008 IEEE MTT-S Int., pp. 667–670, June 2008.
[38] P. -L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207–1215, May 2009.
[39] A. Lai, K. M. K. H. Leong, and T. Itoh, “A novel n-port series divider using infinite wavelength phenomena,” 2005 IEEE MTT-S Int., pp. 1001–1004, June 2005.
[40] S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech., Vol. 52, Issue 12, pp. 2678–2690, Dec. 2004.
[41] C. Wang, B. J. Hu, and X. Y. Zhang, “Compact triband patch antenna with large scale of frequency ratio using CRLH-TL structures,” IEEE Antennas and Wireless Propag. Lett., vol. 9, pp.744–747, 2010.
[42] J. Selga, M. Gil, F. Aznar, J. Bonache, and F. Martin, “Composite right-/left-handed coplanar waveguides loaded with split ring resonators and their application to high-pass filters,” IET Microw. Antennas Propag., vol. 4, Iss. 7, pp. 822–827, 2010.
[43] H. C. Huang, Gain-enhanced metamaterial radom for dual- and circularly-polarized antenna and study of negative group delay effect. M.S. Thesis, Department of Electrical Engineering, National Sun Yat-sen University, Koahsiung, Taiwan, January 2010.
[44] W. C. Elmore, “The transient response of damped linear networks,” J. Appl. Phys., vol. 19, pp. 55–63, Jan. 1948.
[45] J. L. Wyatt, Circuit analysis, simulation and design. North-holland, The Netherlands : Elsiever Science, 1978.
[46] B. Jokanovic, V. Crnojevic-Bengin, and O. Boric-Lubecke, “Miniature high selectivity filters using grounded spiral resonators,” Electron. Lett., vol. 44, no. 17, pp.1019-1020, Aug. 2008.
[47] R. Li, X. Tang, and F. Xiao, “Design of Substrate Integrated Waveguide Transversal Filter With High Selectivity,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 328–330, June 2010.
[48] S. Luo, L. Zhu, and S. Sun, “Coupled Microstrip-Line Bandpass Filters with Wide Upper Stopband and High Frequency Selectivity,” IEEE International Conf. Commun. Circuits Syst. (ICCCAS), pp. 692-695, July 2010.
[49] J. C. Lu, Y. W. Lin, C. K. Liao, and C. Y. Chang, “Five-Pole Parallel-Coupled Microstrip Cascade Quadruplet Filters for High Selectivity and Flat Group Delay,” IEEE Asia-Pacific Microw. Conf., pp. 878-881, Dec. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.201.131.213
論文開放下載的時間是 校外不公開

Your IP address is 44.201.131.213
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code