Responsive image
博碩士論文 etd-0726112-012618 詳細資訊
Title page for etd-0726112-012618
論文名稱
Title
添加氧化鋰與氧化鋁的氧化鋅之發光性質與微結構分析
A study of microstructure and luminescence property on ZnO doped with Li2O and Al2O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-07-26
關鍵字
Keywords
缺陷、光譜、發光性質、氧化鋅
zinc oxide, CL, emission, defect
統計
Statistics
本論文已被瀏覽 5687 次,被下載 4332
The thesis/dissertation has been browsed 5687 times, has been downloaded 4332 times.
中文摘要
此研究利用氧化鋅 (ZnO)作為研究材料,探討當試片摻雜0.2 mol.%氧化鋁或氧化鋰或未摻雜之試片於不同氣氛下燒結 (純氧氣,純氮氣,純氬氣)的影響,觀察其微結構與發光性質變化;利用 XRD 繞射光譜、CL 光譜、掃瞄式電子顯微鏡作為研究工具,分析不同氧分壓或不同摻雜物下氧化鋅的微結構與缺陷化學反應。XRD繞射光譜分析無論是添加摻雜物或不同氣氛燒結,其晶體結構都沒有改變。SEM微結構觀察並無特殊,接著由 CL來驗證缺陷的種類並利用 CL光譜來觀察能階的改變,經過分析可得知氧化鋅之放射波峰包含紫外光,可見光 (藍,綠,黃光)及近紅外光波峰。紫外光 (3.29、3.20 eV)是電子由激發子能階或間隙型鋅原子缺陷能階躍遷至價帶放射之光所組成,藍光 (2.53 eV)為氧空缺相關缺陷,綠光 (2.35 eV)為鋅空缺相關缺陷,黃光則是與間隙型氧原子缺陷和鋰原子相關缺陷有關,近紅外光較少人討論,可能是由於深層能階間的複合 (deep levels recombination)。
Abstract
In this research, we used the zinc oxide (ZnO) which is die pressed and sintered for studying. We want to know the variations of microstructure and luminescence property when we doped 0.2 mol.% Al2O3 or Li2O to ZnO, or sintered under different atmospheres (high purity oxygen, high purity nitrogen, high purity argon). Using X-ray diffractometry (XRD), scanning electron microscope (SEM), and catholuminescence (CL) spectrometry equipped with a SEM to analyze the different samples. The all six samples’ crystal structure didn’t change via XRD. We investigated for the in-gap-level modification using the CL spectrometry. CL analysis results indicated that ZnO emitted UV light, visible light (blue, green, yellow light), and Near-infrared light emissions. The UV light emission was attributed to the two electronic transitions from the donor level of free exciton and Zn interstitial to valence band. The blue light (2.53 eV) emission was attributed to the donor level of oxygen vacancy-related defect. The green light emission was attributed to the electronic transition from the acceptor level of zinc vacancy-related defect.And the yellow light emission was attributed to the O interstitial and Li-related defects. The Near-infrared light may be attributed to the deep levels recombination.
目次 Table of Contents
論文審定書 I
Abstract II
摘要 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 材料簡介 3
2.1.1 半導體 (Semiconductor)介紹 3
2.1.2 氧化鋅簡介 3
2.2 氧化鋅結構與特性 4
2.3 平衡相圖 (ZnO-Al2O3) 7
2.4 氧化鋅的缺陷化學 9
2.4.1 氧化鋅本質缺陷 10
2.4.2 氧化鋅的發光性質 14
第三章 實驗步驟 20
3.1試片製備 20
3.1.1 起始粉末 20
3.1.2 試片製程 20
3.2 導電度與密度量測 23
3.3 微結構觀察和分析 24
3.3.1 X-ray繞射分析 24
3.3.2 光學顯微鏡 (OM) 25
3.3.3 掃描式電子顯微鏡 (SEM) 26
3.3.4 Cathodoluminescence (CL) 26
第四章 實驗結果 28
4.1 X-ray 繞射分析 28
4.2 ZnO密度量測 30
4.3 導電度量測 33
4.4 顯微組織分析 34
4.5 CL 光譜量測 44
第五章 結果討論 50
5.1 XRD分析與SEM微結構分析 50
5.2 CL光譜分析 50
第六章 結論 56
第七章 未來工作 58
參考文獻 59
參考文獻 References
1. C. W. Bunn, “The lattice-dimensions of zinc oxide,” Proc. Phys. Soc., 47 [5] 835-842 (1935).
2. Y. Chen, D. M. Bagnall, H. Koh, K. Park, and K. Hiraga, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys., 84 [7] 3912-3918 (1998).
3. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth,doping & processing,” Materials Today, 7 [6] 34-40 2004
4. L. Zhang and H. Huang, “Structural transformation of ZnO nanostructures,” Appl. Phys. Lett., 90 [2] 023115, 3pp (2007)
5. E.M. Levin, “Phase Diagrams for Ceramists”, American Ceramic Society, Westerville, Ohio, USA, 1964
6. C. Agashe1, O. Kluth1, J. Hüpkes1, U. Zastrow1, B. Rech1, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered,” Appl. Phys. Lett., 95 [4] 1911-1917 (2004)
7. J. Han, P.Q. Mantas, and A.M.R. Senos, “Densification and grain growth of Al-doped ZnO,” J. Mater. Res., 16 [2] 459-468 (2001)
8. J. Han, P.Q. Mantas, and A.M.R. Senos, “Effect of Al and Mn doping on the electrical conductivity of ZnO,” J. Eur. Ceram. Soc., 21 [10-11] 1883-1886 (2001)
9. Y. M. Chiang, D. BirnieⅢ, and W. D. Kingery, “Physical Ceramics”, pp.15-106, John Wiley & Sons, Inc., New York, USA (1997)
10. K. Shirouzu, T. Kawamoto, N. Enomoto, and J. Hojo, “Dissolution Behavior of Al and Formation Process of ZnAl2O4 Phases in Al2O3 -Doped ZnO Sintered Bodies,” Jpn. J. Appl. Phys., 49 [1] 010201, 3pp. (2010)
11. G. W. Tomlins, J. L. Routbort, and T. O. Mason, “Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide,” J. Appl. Phys., 87 [1] 117-123 (2000)
12. A. F. Kohan, G. Ceder, and D. Morgan, “First-principles study of native point defects in ZnO,” Phys. Rev. B, 61 [22] 15019-27 (2000)
13. C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B:Condensed Matter, 308-310 899-903 (2001)
14. R. Vidya, P. Ravindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, “Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations,” Phys. Rev. B, 83 [4] 045206, 12pp. (2011)
15. S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B, 63 [7] 075205, 7pp. (2001)
16. J. Han, P.Q. Mantas, A.M.R. Senos, “Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO,” J. Eur. Ceram. Soc., 22 [1] 49-59 (2002)
17. T. M. Børseth, B. G. Svensson, A. Yu. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett., 89 [26] 262112, 3pp. (2006)
18. A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., 72 [12] 126501, 29pp. (2009)
19. D. C. Look and J. W. Hemsky, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett., 82 [12] 2552-2555 (1999)
20. F. Oba, A. Togo, and Isao Tanaka, “Defect energetics in ZnO A hybrid Hartree-Fock density functional study,” Phys. Rev. B, 77 [24] 245202, 6pp. (2008)
21. A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett., 87 [12] 122102, 3pp. (2005)
22. X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, and X.G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin., 99 [2] 149–154 (2002)
23. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., 68 [3] 403-405 1996
24. Q. X. Zhao,P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, “Deep-level emissions influenced by O and Zn implantations in ZnO,” Appl. Phys. Lett., 87 [21] 211912, 3pp (1996)
25. B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., 79 [7] 943-945 (2001)
26. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., 79 (10) 7983-7990 1996
27. S. M. Lukas and J. L. MacManus-Driscoll, “ZnO-nanostructures, defects, and devices,” Materials Today, 10 [5] 40-48 (2007)
28. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films,” J. Appl. Phys., 95 [3] 1246-1250 (2004)
29. ASTM C373, “Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity for fired whiteware products,” Annual Book of ASTM Standards, 15.02, 112-13 (1990)
30. G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data, 20 [1] 97-105 (1975)
31. B. Y. Yacobi and D. B. Holt, ‘‘Cathodoluminescence Scanning Electron Microscopy of Semiconductors,’’ J. Appl. Phys., 59 [4] R1–24 (1986)
32. M. G. Wardle, J. P. Goss, and P. R. Briddon, ” Theory of Li in ZnO: A limitation for Li-based p-type doping,” Phys. Rev. B,71 [15] 155205, 10pp (2005)
33. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisˇic′, C. C. Ling, C. D. Beling, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B, 110 [42] 20865, 7pp (2006)
34. Santa Chawla, K. Jayanthi, and R. K. Kotnala, “Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods,” Phys. Rev. B, 79 [12] 125204, 7pp (2009)
35. H. Ryoken, I. Sakaguchi, N. Ohashi, T. Sekiguchi, S. Hishita and H. Haneda, “Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method,” J. Mater. Res., 20 [10] 2866-2872 (2005)
36. N. Ohashi, T. Nakata, T. Sekiguchi, H. Hosono, M. Mizuguchi, T. Tsurumi, J. Tanaka, and H. Haneda, “Yellow Emission from Zinc Oxide giving an Electron Spin Resonance Signal at g=1.96,” Jpn. J. Appl. Phys., 38 L113-L115 (1999)
37. S. Y. Tsai, M. H. Hon, and Y. M. Lu, “Local Electronic Structure of Lithium-Doped ZnO Films Investigated by X-ray Absorption Near-Edge Spectroscopy,” J. Phys. Chem. C, 115 [20] 10252–10255 (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code