Responsive image
博碩士論文 etd-0726112-142244 詳細資訊
Title page for etd-0726112-142244
論文名稱
Title
利用多頻聲學儀器來探討水中懸浮沉積物粒徑及濃度 變化之特性:水槽實驗及現場實測
Using multi-frequency acoustic instruments to investigate the suspended sediment grain size and concentration characteristic in flume experiment and in the field
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-19
繳交日期
Date of Submission
2012-07-26
關鍵字
Keywords
懸浮沉積物、實驗室水槽、光學儀器、沉積物再懸浮、多頻聲學
flume, suspended sediment, multi-frequency acoustics, optical measurement, sediment re-suspension
統計
Statistics
本論文已被瀏覽 5679 次,被下載 491
The thesis/dissertation has been browsed 5679 times, has been downloaded 491 times.
中文摘要
過去,測量懸浮沉積物濃度的技術以光學和現場採集水樣為主,然而利用聲學儀器來觀測懸浮沉積物,在現今國際間是一項新的發展。聲學儀器有光學儀器所沒有的優點,例如,聲學儀器較不易受水中濁度、生物、黏滯性過高……等干擾;而比較水樣分析的方式,聲學儀器有高空間及時間上的解析度並且能即時取得懸浮沉積物濃度變化。因此,本研究的主要目的是利用新型的聲學儀器AQUAscat-1000(多頻聲學懸浮顆粒觀測儀),探討懸浮沉積物粒徑及濃度變化之特性。
研究分為兩部分:(1)實驗室水槽 (2)現場實際觀測。實驗室水槽研究結果, bin size範圍的選取,必須根據現場觀測環境做改變,並且要適當的配合聲波頻率的不同做修正,而在水槽實驗時,以bin size為20 mm為主。此外,增揚開啟與否,定義為當最高濃度低於100 mg/l時,開啟增揚時與水樣濃度符合;當最低濃度高於100 mg/l時,關閉增揚與水樣濃度符合。近岸河口的研究通常濃度值都會比較偏高,因此會建議關閉增揚。當回波強度與懸浮顆粒粒徑比較時,不同的聲波頻率對於不同的顆粒粒徑,所反應的回波強度不一樣,導致於所推算出的懸浮沉積物濃度也就不同。水槽實驗結果,當顆粒粒徑越小時必須使用越多不同聲波頻率來進行懸浮沉積物濃度的推算,所推算出的濃度值才會吻合水樣濃度值。最後,聲學儀器與光學儀器比較時,發現光學儀器會因懸浮沉積物為透明體時,發生低估濃度的情形,但在聲學儀器上不會有此情形的發生。
現場實際觀測結果,2009年野外資料,AQUAscat-1000透過水樣分析結果可以作為定量的依據,並且透過與光學儀器的比較可以作為定性的依據,其中觀測到濃度值增高的原因為波浪的剪應力所引起底床沉積物再懸浮的結果。2011年野外資料,水樣與AQUAscat-1000相關性高且有顯著性,雖然有些時間點濃度值稍微高估,但比起光學儀器濃度值範圍卻是比較準確,其中濃度值增高的原因為流的剪應力所引起底床沉積物再懸浮的結果。
Abstract
In the past, the suspended sediment concentration (SSC) was mainly measured by the optical backscattering device (OBS) and water sample filtration. However, there has been a new development that user is based on the acoustics backscattering (ABS) to measure the SSC in the world. The acoustic instruments have some advantages that the optical ones do not have. For example, acoustic instruments are not effected by high turbidity, biofouling and high viscosity in the water. Acoustic instruments have high spatial and temporal resolutions. And they can immediately indicate the SSC changes than the water sample filtration method. Therefore, in this study we used the multi-frequency acoustics instrument (AQUAscat-1000) to investigate the relations of the suspended sediment size and concentration to the acoustic characteristics.
The results are separated into two parts: (1) The calibration process in the flume. (2) The acoustic results in the field experiment. In the first part, we examined the range of preferred bin size with respect to the different frequencies as well as the condition in the flume, and determine that conclude the 20 mm is the best range for our case. In addition, the gain should be used when the maximum SSC is less than 100 mg/l and vice versa. Therefore, in the field case around the river mouth, the signal gain should be turned off due to high concentrations. According to the sensitivity of the backscatter intensity of different frequencies to the suspended particle sizes, multiple frequencies are needed to derive the SSC when the sediment size becomes smaller. The last point in this part is the comparison of the results between the acoustics and optical instruments. When the suspended particles in the water column are transparent, the optical measurement of the SSC is underestimated, but the acoustic method is not.
The result of the field experiment in 2009 showed that the AQUAscat-1000 is a better instrument to quantify SSC than the optical instruments. The SSC increase caused by the bottom sediment re-suspension was due to the wave shear. In the 2011 experiment, although the acoustic results overestimated the SSC at some points but they still had higher relation and significance with water sample data than the optical measurements. The SSC increase caused by the bottom sediment re-suspension was due to the current shear.
目次 Table of Contents
目錄
致謝 Ⅰ
中文摘要 Ⅲ
英文摘要 Ⅴ
目錄 Ⅶ
圖目錄 XI
表目錄 XIV
第一章 序論 1
第一節 前言 1
第二節 前人研究 6
第三節 研究目的 8
第二章 研究地區 10
第一節 地理位置 10
第二節 水文背景 13
第三章 研究方法 15
第一節 實驗室水槽試驗 15
一、水槽設計理念 15
二、儀器介紹 18
三、儀器配置 20
四、實驗流程 20
第二節 現場調查 23
一、實驗設計理念 24
二、儀器介紹 28
三、水樣採集分析步驟 35
第三節 資料分析方法 36
一、聲學理論 36
3-1-1 單頻率回波強度轉換懸浮沉積物濃度 36
3-1-2 多頻率回波強度轉換懸浮沉積物濃度 39
二、水動力參數計算 42
3-2-1 底床剪應力 42
第四章 觀測結果與資料分析 43
第一節 水槽實驗 43
一、AQUAscat-1000參數設定不同測試 45
二、濃度測試 53
三、不同聲波頻率對懸浮沉積物粒徑測試 54
四、聲學和光學儀器比較測試 81
第二節 2009年七月現場實驗 83
一、 水文環境 83
二、回波強度轉換懸浮沉積物濃度 85
三、光學儀器資料 88
第三節 2011年七月現場實驗 90
一、 水文環境 90
二、回波強度轉換懸浮沉積物濃度 92
三、光學儀器資料 95
第五章 討論 97
第一節 儀器參數的不同設定 97
第二節 聲學與懸浮沉積物濃度 99
第三節 聲學與懸浮沉積物粒徑 99
第四節 聲學和光學儀器比較 102
第五節 2009年七月現場實驗 103
第六節 2011年七月現場實驗 108
第六章 結論 111
參考文獻 114
參考文獻 References
中文部分
王君豪,2007。高屏溪口流場三維結構的觀測分析,國立中山大學海洋物理研究所碩士論文,共73頁。
李佳娜,2005。潮汐與波浪之互動對邊界層之影響,國立中山大學海洋地質及化學研究所碩士論文,共114頁。
侯立華,1995。高雄一港口航道對近岸沉積物分佈的影響,國立中山大學海洋地質及化學研究所碩士論文,共91頁。
俞何興,1997。台灣海域之地質區分初探,地質17卷,1期,1∼14頁。
張嘉文,2009。島嶼型河川之海陸交互作用:潮汐對河口區顆粒態有機碳及無機碳之影響,國立中山大學海洋地質及化學研究所碩士論文,共91頁。
黃雅雯,2005。探討不同懸浮顆粒在沉降與再懸浮作用中之水動力行為,國立中山大學海洋地質及化學研究所碩士論文,共108頁。
程鵬、高抒,2001。ADCP測量懸沙濃度的可行性分析與現場標定,海洋與湖沼第32卷第二期,共9頁。
經濟部水資源局,2001。中華民國九十年台灣水文年報。
楊仁凱,2010。沖淡水中粒徑結構之時空變化,國立中山大學海洋地質及化學研究所碩士論文,共141頁。
劉坤章,1999。從沉積物粒徑分析來看高屏近岸海域的沉積物傳輸,國立中山大學海洋地質及化學研究所碩士論文,共99頁。
劉金源,2001。水中聲學-水聲系統之基本操作原理,國立編譯館,共619頁。
蘭志剛、龔德俊、李思忍、徐永帄、秦楓、姜靜波,2004。ADCP對懸浮沉積物濃度的測量及誤差分析研究,海洋科學第28卷第10期,共4頁。
英文部分
Agrawal, Y. C. and Pottsmith, H. C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168, 89-114.
Deines, K. L., 1999. Backscatter estimation using broadband acoustic Doppler current profilers. Proceedings IEEE 6th Working Conference on Current Measurements, 249-253.
Gartner, J. W., 2004. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology, 211, 169-187.
Guerrero, M., Ruther, N. and Szupiany, R. N., 2011. Laboratory validation of ADCP techniques for suspended sediments investigation. Flow Measurement and Instrumentation, 10.
Ha, H. K., Maa, J. P. Y., Park, K. and Kim, Y. H., 2011. Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic Doppler current profilers. Marine Geology, 279, 199-209.
Hay, A. E. and Sheng, J., 1992. Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter. Journal of Geophysical Research, 97, 15661-15677.
Hsu, Y. S., Cai, J. F., Wei, C. M. and Hung, H. P., 2007. Rating relations between turbidity and suspended solids concentration of reservoir sediment- a case study of Shi-Men Reservoir. Journal of Chinese Agricultural Engineering, 53, No.1.
Hung, J. J. and Shy, C. P., 1995. Speciation of dissolved selenium in the Kaoping and Erhjen Rivers and Estuaries, Southwestern Taiwan. Estuaries, 18, 234-240.
Kim, Y. H. and Voulgaris, G., 2003. Estimation of suspended sediment concentration in estuarine environments using acoustic backscatter from an ADCP. Coastal Sediment, ASCE.
Liu, J. T., Liu, K. J. and Hunag, J. C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181, 357-386.
Milliman, J. D. and Meade, R. H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 1-21.
Meral, R., 2008. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments. Sensors, 8, 979-993.
Meral, R., Smerdon, A., Merdun, H. and Demirkıran, A. R., 2010. Estimation of suspended sediment concentration by acoustic equations for soil sediment. African Journal of Biotechnology, 9, 170-177.
Orton, P. M., Jay, D. A. and Wilson, D. J.: A multi-class suspended particulate matter calibration for bottom boundary layers. Submitted to Marine Geology, April 3, 2003.
Poerbandono and Mayerle, R., 2004. Assessment of approaches for Converting Acoustic echo Intensity into Suspended Sediment Concentration. 3rd FIG Regional Conference Jakarta, Indonesia, October 3-7.
Thorne, P. D., Agrawal, Y. C. and Cacchione, D. A., 2007. A Comparison of Near-Bed Acoustic Backscatter and Laser Diffraction Measurements of Suspended Sediments. Journal of Oceanic Engineering, 32, 225-235.
Thorne, P. D. and Hanes, D. M., 2002. A review of acoustic measurement of small-scale sediment processes. Continental Shelf research, 22, 603-632.
Urick, R. J., 1983. Principles of underwater sound. 423
Wall, G. R., Nystrom, E. A. and Litten, S., 2006. Use of an ADCP to Compute Suspended-Sediment Discharge in the Tidal Hudson River, New York. Scientific Investigations Report, 5055.
Wright, L. D. and Nittrouer, C. A., 1995. Dispersal of river sediments in coastal seas - 6 contrasting cases. Estuaries, 18, 494-508.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code