Responsive image
博碩士論文 etd-0726112-151950 詳細資訊
Title page for etd-0726112-151950
論文名稱
Title
高屏溪口小尺度沖淡水動力作用之研究
Small-Scale River Plume Dynamics at the Gaoping River Mouth
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-07-26
關鍵字
Keywords
EOF分析、風強指數、時空變化、高屏溪、小尺度沖淡水動力
temporal and spatial variability, plume dynamics, hydrological structure, wind strength index, empirical orthogonal function (EOF) analysis, Gaoping River
統計
Statistics
本論文已被瀏覽 5661 次,被下載 436
The thesis/dissertation has been browsed 5661 times, has been downloaded 436 times.
中文摘要
海洋中沉積物的來源主要分為陸源與海源,其中大多數陸源沉積物主要是經由河流輸入至海洋,陸源沉積物從河川傳輸至海洋的源到匯分四個階段:(1)河流的沖淡水輸出(2)初始的沉降作用(3)再懸浮與傳輸過程(4)長時間的沉積。其中沖淡水在海洋中的擴散,是陸源物質輸入海洋的第一階段,沖淡水出海後受風場、流場、波浪場以及密度差的影響,改變其擴散的方向以及範圍,密度差異而形成垂直的分層。沖淡水夾帶著大量的陸源物質,造成其水色混濁與清澈海水交界處會形成水平與垂直的鋒面(front),在垂直鋒面上鹽度明顯分層,流向相反的結果造成濁度高值。因此本文研究目的為藉由觀測高屏溪口表層溫度、鹽度和粒徑群結果探討沖淡水的時空變化,透過了解沖淡水的擴散機制,追蹤陸源沉積物的源頭。
觀測時間,2009年7月28日∼30日及2011年7月30 日∼8月2日,兩年皆有高屏溪口沿岸表底層時序資料,此外2009年有額外搭配走航的資料。觀測結果顯示2009年流量低於日平均流量,由衛星影像與時空序列分析得知,退潮時除了受潮流影響外,地轉流與風驅流將沖淡水向河口西側偏轉。河川逕流流速為0.16 m/s,最大風驅流流速為0.29 m/s,退潮時風場皆有大過風強指數|W_s |>1的門檻風速6.1 m/s。漲潮時風速在4.2~7.9 m/s接近門檻,搭配漲潮流使沖淡水從西往東偏轉至峽谷頭頂端。EOF分析的結果,證實了當流量低時,波浪與風主導沖淡水的擺動。
2011年流量大於日平均流量,河川逕流強,潮汐使得整層水層上下流速流向一致,河川逕流流速經計算為0.30 m/s,最大風驅流流速為0.12 m/s,沿岸風無法達到風強指數|W_s |>1的門檻風速11.67 m/s,沖淡水的傳輸以河川逕流為主。在衛星影像觀察沖淡水水色,退潮時向河口西側擴散,漲潮時時序資料皆無沖淡水訊號,平均向岸流流速為0.52 m/s,大於河川逕流,所以高流量時沖淡水擺動機制由潮汐為主要因子。EOF分析的結果,證實流量高時主要營力為流場,其次為風場。
Abstract
A major part of the terrestrial sediment in the ocean comes from the land via river plume. There are four stages in sediment dispersal from rivers into the sea: supply via plume, initial deposition, resuspension and transport by waves and currents or by the slope failure, and long-term net accumulation. We can understand the dispersion and transport of the river plume by in situ observations of hydrodynamic of the plume field. Therefore, it is helpful to study river plume hydrodynamics, such as winds, tides, waves, and currents. The purpose of this study is to identify the type of plume dynamics by analyzing the temporal and spatial variability of hydrological structures observed around the Gaoping River mouth.
We observed the bottom and surface time series of temperature, salinity, turbidity, suspended sediment concentration, and velocity profile by instrument mounted at the tetrapods and a moored buoy during July 28 to 30 in 2009 and July 30 to August 2 in 2011. Besides, we investigated the spatial structures of the river plume in Gaoping River mouth by using a fishing boat in 2009. We also acquired satellite images to assist our study.
The results showed that the river discharges during 2009 was lower than daily average discharge. Combined the temporal and spatial observations and satellite images, we determined that the river plume turned west during the ebb tide was influenced by Coriolis force and winds. The buoyancy-driven current velocity was 0.15 m/s and the maximum of wind-driven current velocity was 0.30 m/s. The wind strength index (Ws) determines whether a plume’s along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. If |W_s | > 1 on average the wind velocity more than 5.9 m/s. The wind velocity reached this threshold during most of the ebb periods, and around that value in the flood time. Flood currents combined with cross-shore wind pushed the river plume to swing to the east. The data were analyzed by empirical orthogonal function (EOF) analysis. The results indicated that winds and waves were the main factors influencing plume dynamics during low-discharge period.
During the field experiment in 2011, the river discharge was greater than daily average discharge. The buoyancy-driven and the maximum of wind-driven current velocities were 0.30 and 0.12 m/s, respectively. The wind velocity did not reach the threshold that was 11.67 m/s. The buoyancy-driven current was more significant than wind-driven current. By analyzing the ocean color of satellite images, the river plume was spreading from the river mouth and toward west during ebb. The time series data also showed that there was plume signal at the same time. The average cross-shore current velocity was 0.52 m/s, being larger than the buoyancy-driven current. Therefore, the tide was the main factor deciding where the plume discharged. The first eigemode of EOF suggested that current was the most important factor influencing plume dynamics during high-discharge period. The second eignmode described the dominant influence of wind.
目次 Table of Contents
目錄
致謝 I
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章 序論 1
第一節 前言 1
第二節 前人研究 5
第三節 沖淡水與沈積物動力研究 11
第四節 研究目的 13
第二章 研究區域 15
第一節 地理位置與水文背景 15
第二節 河海系統 16
第三章 實驗設計 21
第一節 站位規劃 21
第二節 水樣採集及儀器介紹 26
第四章 資料分析方法 36
第一節 層化混合參數 36
第二節 風強指數Ws 39
第三節 經驗正交函數分析 41
第五章 觀測結果 45
第一節 2009年七月現場實驗 45
5.1.1水文時間與空間序列資料分析 45
5.1.2層化混合參數分析結果 60
5.1.3風強指數分析結果 64
5.1.4經驗正交函數分析結果 65
第二節 2011年七月現場實驗 72
5.2.1水文時序資料分析 72
5.2.2層化混合參數分析結果 84
5.2.3風強指數分析結果 86
5.2.4經驗正交函數分析結果 87
第六章 討論 93
第一節 高屏溪沖淡水時空變化 93
第二節 水動力對高屏溪沖淡水的影響 96
第三節 風與河川逕流量對高屏溪沖淡水傳輸方向的影響 97
第四節 EOF分析結果 98
第五節 海底峽谷水與沖淡水互動 100
第七章 結論 103
參考文獻 106
附錄 115
參考文獻 References
中文部分:
王君豪,2007。高屏溪口流場三維結構的觀測分析,國立中山大學海洋物理研究所碩士論文,共73頁。
李佳娜,2005。潮汐與波浪之互動對邊界層之影響。國立中山大學海洋地質及化學研究所碩士論文,共114頁。
吳孟麟,2004,高屏海底峽谷與陸棚流場之研究。中山大學海洋地質及化學研究所碩士論文,共 131 頁。
林育如,2006。高屏峽谷水團運動受地形水深影響。國立中山大學海洋物理研究所碩士論文。共 85 頁。
張育嘉,2001。高屏峽谷及附近海域之流場觀測。國立中山大學海洋 資源研究所碩士論文。共 91 頁。
許敦睿,1999。曾文溪河口沖淡水與懸浮沈積物擴散現象及數值模擬研究,國立中山大學海洋地質及化學研究所碩士論文,共111頁。
黃俊傑,2001。從高屏峽谷水文之時空變化來探討懸浮沉積物質傳輸的機制,國立中山大學海洋資源研究所,共101頁。
黃雅雯,2005。探討不同懸浮顆粒在沉降與再懸浮作用中之水動力行為。國立中山大學海洋地質及化學研究所碩士論文,共123頁。
楊心玫,2006,高屏河海溶解態有機物質之光學與分佈特徵,國立中山大學海洋地質及化學研究所碩士論文,共109頁。
楊仁凱,2010。沖淡水粒徑結構之時空變化。國立中山大學海洋地質及化學研究所碩士論文,共 141 頁
劉文俊,1999。台灣的潮汐(第二版)。自費出版。
英文部分:
Anthony, E. J. and Hequette, A., 2007. The grain-size characterization of coastal sand from the Somme estuary to Belgium: sediment sorting processes and mixing in a tide- and storm-dominated setting. Sedimentary Geology. 202, 369-382.
Bowman M. J., 1988. Estuarine fronts. Hydrodynamics of estuaries, Vol. I, 85-132.
Bursik, M. I., 1995. Theory of the sedimentation of suspended particles from fluvial plumes. Sedimentology, Vol. 42, No. 6: 831-838.
Chao, S. Y. and Boicourt, W. C., 1986. Onset of estuarine plumes. J. Phys. Oceanogr.,, Vol. 16, No.: 2137-2149.
Chao, S. Y., 1988a. River-forced estuarine plumes. Journal of Physical Oceanography, Vol. 18, No. 1: 72-88.
Chao, S. Y., 1988b. Wind-driven motion of estuarine plumes. Journal of Physical Oceanography, Vol. 18, No. 8: 1144-1166.
Chao, S. Y., 1990. Tidal modulation of estuarine plumes. Journal of Physical Oceanography, Vol. 20, No. 7: 1115-1123.
Chao, S. Y., 1998. Hyperpycnal and buoyant plumes from a sediment-laden river. Journal of Geophysical Research-Oceans, Vol. 103, No. C2: 3067-3081.
Chang T. S., Joerdel O., Flemming B. and Bartholoma‥ A., 2006. The role of particle aggregation/disaggregation in muddy sediment dynamics and seasonal sediment turnover in a back-barrier tidal basin, East Frisian Wadden Sea, southern North Sea. Marine Geology. 235, 49-61.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D. and Hu, J. C., 2003. Links between erosion runoff variability and seismicity in the Taiwan orogen. Nature. 426, 648-651.
Fettweis, M., Sas, M. and Monbaliu, J., 1998. Seasonal, neap - spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine, Coastal and Shelf Science. 47, 21-36.
Fettweis, M., Francken, F., Pison, V. and Van den Eynde, D., 2006. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Marine Geology. 235, 63-74.
Garel, E., Pinto, L., Santos, A. and Ferreira, O., 2009. Tidal and river discharge forcing upon water and sediment circulation at a rock-bound estuary (Guadianaestuary, Portugal). Estuarine, Coastal and Shelf Science. 84, 269-281.
Garvine, R. W. and Monk, J. D., 1974. Frontal structure of a river plume. Journal of Geophysical Research, Vol. 79, No. 15: 2251-2259.
Hung, J. J. and Shy, C. P., 1995. Speciation of dissolved selenium in the Kaoping and Erhjen Rivers and Estuaries, Southwestern Taiwan. Estuaries. 18, 234-240.
Karageorgis, A. P., Kourafalou, V. H., Anagnostou, C., Tsiaras, K. P., Raitsos, D. E., Papadopoulos, V. and Papadopoulos, A., 2009. River induced particle distribution in the Northwestern Black Sea (September 2002 and 2004). Journal of Geophysical Research. 114, C12003.
Kagan, B. A., Tejedor, L., Alvarez, O., Izquierdo, A., Tejedor, B. and Mananes, R., 2001, Weak wave-tide interaction formulation and its application to Cadiz Bay, Continental Shelf Research, Vol. 21, pp. 697-725.
Kao, S. J. and Milliman, J. D., 2008. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. Journal of Geology. 116, 431-448.
Liu, C. C., Chang, C. H., Wen, C. G., Huang, C. H., Hung, J. J. and Liu, J. T., 2009. Using satellite observations of ocean color to categorize the dispersal patterns of river-borne substances in the Gaoping (Kaoping) River, Shelf and Canyon system. Journal of Marine Systems, Vol. 76, No. 4: 496-510.
Lee, I. H., Lien, R. C., Liu, J. T., and Chuang, W. S., 2009a. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. Journal of Marine Systems. 76, 383-396.
Lee, I. H., Wang, Y. H., Liu, J. T., Chuang, W. S. and Xu, J.P., 2009b. Internal tidal currents in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems. 76, 397–404.
Liu, J. T., Chao, S. Y. and Hsu, R. T., 1999. The influence of suspended sediments on the plume of a small mountainous river. Journal of Coastal Research, Vol. 15, No. 4: 1002-1010.
Liu, J. T., Chao, S. Y. and Hsu, R. T., 2002a. Numerical modeling study of sediment dispersal by a river plume. Continental Shelf Research. 22, 1745-1773.
Liu, J.T. and Lin, H.L., 2004. Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology. 207, 55-81.
Liu, J. T., Liu, K. J. and Huang, J. C., 2002b. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology. 181, 357-386.
Liu, J. T., Hung, J. J., Lin, H. L., Huh, C. A., Lee, C. L., Hsu, R. T., Huang, Y. W. and Chu, J. C., 2009. From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems, Vol. 76, No. 4: 417-432.
Liu, Y. G., MacCready, P. and Hickey, B. M., 2009. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters, Vol. 36, No.: 6.
Liu, Y., MacCready, P., Hickey, B. M., Dever, E. P., Kosro, P. M. and Banas, N. S., 2009. Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. J. Geophys. Res. 114, C00B04.
Meade, R. H., Nordin, C. F., Curtis, W. F., Curtis, W. F., Costarodrigues, F. M., Dovale, C. M. and Edmond, J. M., 1979. Sediment loads in the Amazon River. Nature. 278, 161-163.
Miliman J. D, Shen, H. T., Yang Z. S. and Meade, R. H., 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research. 4, 37- 45.
Milliman, J. D. and Syvitski, J. P. M., 1992. Geomorphic tectonic control of sediment discharge to the ocean - the importance of small mountainous rivers. Journal of Geology, Vol. 100, No. 5: 525-544.
Nielsen, A. A., Conradsen, K. and Anderson, O. B., 2002. A change oriented extension of EOF analysis applied to the 1996–1997 AVHRR sea surface temperature data. Physical and Chemistry of the Earth. 27, 1379–1386.
Pritchard, D. W., 1952. Estuarine hydrography. In: Advances in Geophysics. Academic Press Inc., New York, NY, Vol. 1.
Pritchard, D. W., 1954. A Study of the Salt Balance in a Coastal Plain Estuary. Journal of Marine Research. 13, 133-144.
Pritchard, D. W., 1956. The Dynamic Structure of a Coastal Plain Estuary. Journal of Marine Research. 15, 33-42.
Spahn, E. Y., Horner‐Devine, A. R., Nash, J. D. and Kilcher, L. F., 2009. Particle resuspension in the Columbia River plume near‐field. Joumal of Geophysical Research. 114, C00B14.
Syvitski, J. P. M., Asprey, K. W., Clattenburg, D. A. and Hodge, G. D., 1985. The prodelta environment of a fjord - suspended particle dynamics. Sedimentology, Vol. 32, No. 1: 83-107.
Stumpf, R. P., Gelfenbaum, G. and Pennock, J. R., 1993. Wind and tidal forcing of a buoyant plume, Mobile-bay, Alabama. Continental Shelf Research, Vol. 13, No. 11: 1281-1301.
Uncles, R. J., Stephens, J. A. and Harris, C., 2006. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: the upper Humbere and Ouse Estuary, UK. Marine Geology. 235, 213-228.
Vaz, N. and Dias, J. M., 2008. Hydrographic characterization of an estuarine tidal channel. Journal of Marine Systems. 70, 168-181.
Warrick, J. A., Mertes, L. A. K., Washburn, L. and Siegel, D. A., 2004. Dispersal forcing of southern California river plumes, basedon field and remote sensing observations. Geo-Marine Letters. 24, 46-52.
Warrick J. A. and Stevens A. W., 2011. A buoyant plume adjacent to a headland - observations of the Elwha River plume. Continental Shelf Research. 31, 85-97.
Warrick, J. A., Xu, J., Noble, M. A. and Lee, H. J., 2008. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river. Continental Shelf Research. 28, 991-1009.
Wroblewski, J. S. and Hofmann, E. E., 1989. U. S. interdisciplinary modeling studies of coastal-offshore exchange process: Past and future. Progress in Oceanography, Vol. 23, No.: 65-99.
Wright, L. D., 1985. River deltas in: Davis. Coastal Sedimentary Environments, Vol., No. New York, Springer, No.: 1-76.
Wright, L. D. and Coleman, J. M., 1971. Effluent expansion and interfacial mixing in presence of a salt wedge, Mississippi River delta. Journal of Geophysical Research, Vol. 76, No. 36: 8649-8661.
Wright, L. D. and Nittrouer, C. A., 1995. Dispersal of river sediments in coastal seas - 6 contrasting cases. Estuaries, Vol. 18, No. 3: 494-508.
Whitney, M. M. and Garvine, R. W., 2005. Wind influence on a coastal buoyant outflow. Journal of Geophysical Research. 110, C03014.
Wang, R. M., You, C. F., Chu, H. Y. and Hung, J. J., 2009. Seasonal variability of dissolved major and trace elements in the Gaoping (Kaoping River Estuary, Southwestern Taiwan. Journal of Marine Systems, Vol. 76, No. 4: 444-456.
Wang, Y. H., Jan, S. and Wang, D. P., 2003. Transports and tidal current estimates in Taiwan Strait from shipboard ADCP observations. Estuarine, Coastal and Shelf Science. 57, 193-199.
Wang, Y. H., Lee, I. H. and Liu, J. T., 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science. 80, 153–160.
Wang, Z. H., Li, L. Q. and Chen, D. C., 2007. Plume front and suspended sediment dispersal off the Yangtze (Changjiang) River mouth, China during non-flood season. Estuarine, Coastal and Shelf Science. 71, 60-67.
Xia, M., Xie, L. and Pietrafesa, L. J., 2007. Modeling of the Cape Fear River Estuary plume. Estuaries and Coasts, Vol. 30, No. 4: 698-709.
Yu, H. S. and Chiang, C. S., 1997. Kaoping shelf : morphology and tectonic siginificance. Journal of Asian Earth Sciences. 15, 9 -18
Yu, H. S., Hung, C. S. and Ku, W. J., 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta Oceanographica Taiwanica. 28, 19-30.
Yanagi, T. and K. Yoshikawa., 1983. Generation mechanisms of tidal residual circulation. Journal of Oceanography. 156-166.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code