Responsive image
博碩士論文 etd-0726112-220713 詳細資訊
Title page for etd-0726112-220713
論文名稱
Title
以耗散粒子動力學觀察石墨烯與聚甲基丙烯酸甲酯之奈米複合材料結構
Investigation on Graphene/poly(methyl methacrylate) nano-composite structures by Dissipative Particle Dynamics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-29
繳交日期
Date of Submission
2012-07-26
關鍵字
Keywords
耗散粒子動力學、分子動力學、福洛伊哈金斯參數、官能化、石墨烯、聚甲基丙烯酸甲酯
Molecular Dynamics, Graphene, Flory-Huggins, Dissipative particle dynamics, Functionalized, PMMA
統計
Statistics
本論文已被瀏覽 5681 次,被下載 883
The thesis/dissertation has been browsed 5681 times, has been downloaded 883 times.
中文摘要
本研究利用分子動力學與耗散粒子動力學模擬石墨烯(graphene)與聚甲基丙烯酸甲酯(Poly(methyl acrylate))複合材料於不同混合方式下的平衡結構。我們發現即使改變體積分率以得到不同的交互作用參數,仍然會導致石墨烯產生團聚(cluster)的現象,而團聚現象會明顯影響強化基材的能力。因此我們透過改變交互作用參數來觀察其平衡結構的差異,而結果發現當交互作用參數大於95.4335時發生團聚,交互作用參數小於80為石墨烯分散,最後,當其數值介於95.4335和80之間其結構稱之為相轉變。我們從結果中得知隨著體積分率的減少,只需要較少的官能化程度即可分散石墨烯。另外,我們利用不同的官能化修飾比例,發現到隨著官能化修飾比例的上升,石墨烯之間的排列會變為鬆散,最終達到分散。為了瞭解石墨烯平衡結構上的不同,我們透過石墨烯質量中心距離與石墨烯的表面積來解釋相轉變、分散的效應。
Abstract
In this study, the nanocomposite of graphene and PMMA at the different volume fractions was investigated by molecular dynamics and dissipative particle dynamics simulations. The MD simulation can be performed to simulate the nanocomposite system at different weight fractions to obtain the different repulsive parameters. After obtaining the repulsive parameters, the DPD simulation can be utilized to study the equilibrium phase of graphene and PMMA nanocomposite. From our result, all equilibrium phases at different volume fractions are cluster. However, it is difficult to enhance the property for nanocomposite material due to the aggregated graphene (cluster). Hence, we change the interaction repulsive parameters to stand for the different degrees of functionalized graphene. When the interaction repulsive parameter is smaller than 80, the equilibrium phase is dispersion. In addition, the different number of functionalized garphene bead per graphene was studied, and results show that the equilibrium phase is dispersion when all graphene beads per graphene are functionalized.
目次 Table of Contents
目錄
目錄 I
圖目錄 IV
表目錄 VI
中文摘要 VII
Abstract VIII

第一章 序論 1
1.1研究動機與目的 1
1.2石墨烯與聚甲基丙烯酸甲酯簡介 4
1.2.1 石墨烯 4
1.2.2聚甲基丙烯酸甲酯(PMMA) 6
1.3石墨烯與聚甲基丙烯酸甲酯簡介 8
1.3.1機械性質 8
1.3.2熱傳導性質 9
1.3.3理論模擬研究 10
1.4本文架構 14

第二章 模擬方法與理論介紹 15
2.1分子動力學 16
2.1.1勢能函數 16
2.1.2運動方程式 17

2.1.3積分法則(velocity verlet) 18
2.1.4系綜 18
2.1.5壓力修正 19
2.1.5.1 Andersen修正理論 19
2.1.5.2 Parrinello-Rahman修正理論 21
2.1.6溫度修正 22
2.1.6.1 Velocity Scaling修正理論 22
2.1.6.2 Nose-Hoover修正理論 22

2.2耗散粒子動力學 24
2.2.1連接DPD與MD的參數 24
2.2.1.1 壓縮係數 24
2.2.1.2 福洛伊哈金斯參數與珠子間作用力參數 25
2.2.2耗散粒子動力學中的作用力 26
2.2.3積分法則 29

第三章 數值模擬方法 30
3.1週期邊界 30
3.2鄰近原子表列法 31
3.2.1截斷半徑法 31
3.2.2維理表列法 32
3.2.3巢室表列法 32
3.2.4維理表列結合巢室表列法 33
3.3物理參數與無因次化 34
3.3.1耗散粒子動力學的無因次化 34

3.4分子動力學模擬流程圖 35
3.5耗散粒子動力學模擬流程圖 36
3.6統計參數之介紹 37
3.6.1溶解度參數 37
3.6.2石墨烯質量中心間的距離分佈 37

第四章 結果分析與討論 38
4.1分子動力學的物理模型及求取DPD必要參數 38
4.2耗散粒子動力學的物理模型及設定 41
4.3不同體積分率下的平衡結構 43
4.3.1不同官能化程度之石墨烯平衡結構和石墨烯中心分佈分析 45
4.3.2不同修飾比例之官能化石墨烯平衡結構 52

第五章 結論與未來展望 54
5.1結論 54
5.2未來展望 54
參考文獻 References
參考文獻
[1] H. D. Wu, D. Y. Ji, W. J. Chang, J.C. Yang, S.Y. Lee, “Chitosan-based polyelectrolyte complex scaffolds with antibacterial properties for treating dental bone defects,” Mater. Sci. & Eng.: C, 32, 207, 2012.
[2] H. H. Abdel-Razik, M. Abbo, and H. A. Almahy, “Polymer-Based Metal Adsorbents via Graft Copolymerization of Polyvinyl Alcohol with Diaminomaleonitrile: A Green Chemistry Approach,” J. Appl. Polym. Sci., 125, 2102, 2012.
[3] Y. K. Yang, L. J. Yu, R. G. Peng, Y. L. Huang, C. E. He, H. Y. Liu, X. B. Wang, X. L. Xie, and Y. W. Mai, “Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing,” Nanotechnology, 23, 225701, 2012.
[4] H. Gensler, R. Sheybani, P. Y. Li, R. L. Mann, E. Meng, “An implantable MEMS micropump system for drug delivery in small animals,” Biomed Microdevices, 14, 483, 2012.
[5] E. Bahar, N. Ucar, A. Onen, Y. J. Wang, M. Oksuz, O. Ayaz, M. Ucar, A. Demir, “Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers,” J. Appl. Polym. Sci., 125, 2882, 2012.
[6] Z. Tang, J. Wu, Q. Liu, M. Zheng, Q. Tang, Z. Lan, J. Lin, “Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells,” J. Power Sources, 203, 282, 2012.
[7] J. H. Yeum, Y. Deng., “Synthesis of high molecular weight poly(methyl methacrylate) microspheres by suspension polymerization in the presence of silver nanoparticles,” Colloid Polym. Sci., 283,1172, 2005
[8] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schnepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme and L. C. Brinson, “Functionalized Graphene Sheets for polymer nanocoposites,” Nature, 3, 327, 2008.
[9] J. Li, X. Li, H. Zhai, L. Wang, “Au20: A Tetrahedral Cluster,” Science, 299, 864, 2003.
[10] T. Mousavand, J. Zhang, S. Ohara, M. Umetsu, T. Naka and T. Adschiri, “Organic-ligand-assisted supertical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic
phase,” J. Nanopart. Res., 9, 1067, 2007.
[11] W. I. Park, D. H. Kim, S.-W. Jung, and G. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., 80, 4232, 2002
[12] J. H. Hiesh, C. C. Chang, J. S. Cherntg, “Photocatalytic and antibacterial properties of TaON-Ag nanocomposite thin films” , The Solid Film, 518, 7263, 2010.
[13] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56, 1991.
[14] C. Meier, A. Gondorf, S. Luttjohann, and A. Lorke, “Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap,” J. Appl. Phys., 101, 103112, 2007.
[15] M. Terrons, “A big step for Ecuador,” Nature Mater., 9, 704, 2010.
[16] S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, “Polyethylene nanofibers with very high thermal conductivities,” Nat. Nanotech., 5, 251, 2010.
[17] I. A. Guz, A. A. Rodger, A. N. Guz, J. J. Runshchitsky, “Developing the mechanical models for nanomaterials,” Composites part A, 38, 1245, 2007.
[18] M. D. Hughes, Y. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, and C. J. Kiely, “Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions,” Nature, 437, 1132, 2005.
[19] R. J. Davis, and E. G. Derouane, “A non-porous supported-platinum catalyst for aromatization of n-hexane,” Nature, 349, 313, 1991.
[20] A. Misra, J. Giri, and C. Daraio, “Hydorgen evolution on hydrophobic aligned carbon nanotube arrays,” ACS Nano, 3, 3903, 2009.
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene”, Naure, 438, 197, 2005.
[22] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer,” Phys. Rev. Lett, 100, 016602, 2008.
[23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306, 666, 2004.
[24] K. Saito, J. Nakamura, and A. Natori, “Ballistic thermal conductance of an graphene sheet,” Phys. Rev. B, 76, 115409, 2007.
[25] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.
Lau, “Superior thermal conductivity of single-layer graphene,” Nano lett., 8, 902, 2008.
[26] J. Jiang, J. Lan, J. Wang, and B. LI, “Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism,” J. Appl. Phys., 107, 054314, 2010.
[27] V. Varshney, S. S. Patnaik, A. K. Roy, and Barry L. Farmer, “Modeling of thermal conductance at transverse CNT-CNT Interfaces,” J. Phys. Chem. C, 114, 16223, 2010.
[28] C. Lee, X. Wei, J. W. Kysar, and J. Hone “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 321, 385, 2008.
[29] J. Tsai, J. Tu, “Characterizing mechanical properties of graphite using molecular dynamics simulation,” Mater. Des., 31, 194, 2010.
[30] G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen, H. Bianco-Peled, “Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide,” Carbon, 43, 641, 2005.
[31] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, “Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation,” Adv. Mater., 20, 4490, 2008.
[32] S. Stankovich, D. A. Dikin, R. D. Pinter, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, 45, 1558, 2007.
[33] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H. Zhao, “Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles,” Langmuir, 25, 11808, 2009.
[34] G. Williams, B. Seger, and P. V. Kamat, “TiO2 graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano, 2, 1487, 2008.
[35] H. C. Schiepp, J. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide,” Phy. Chem. B lett., 110, 8535, 2006.
[36] H. L. Guo, X. F. Wang, Q. Y. Qiant, F. B. Wang, and X. H. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano, 3, 2653, 2009.

[37] H. Duan, E. Xie, L. Ham, and Z. Xu, “Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation,” Adv. Mater., 20, 3284, 2008
[38] B. Das, K. E. Prasad, U. Ramamurty and C. N. R. Rao, “Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene,” Nanotech., 20, 125705, 2009.
[39] D. Cai, and M. Song, “A simple route to enhance the interface between graphite oxide nanoplatelets and a semi-crystalline polymer for stress transfer,” Nanotech., 20, 315708, 2009.
[40] Y. Xi, W. Hong, H. Bai, C. Li, and G. Shi, “Strong and ductile poly(vinyl alcohol):graphene oxide composite films with a layered struture,” Carbon, 47, 3538, 2009.
[41] M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, “Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites,” J. Mater. Chem., 19, 7098, 2009.
[42] D. Cai, K. Yusoh, and M. Song, “The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite,” Nanotech., 20, 085712, 2009.
[43] X. Zhao, Q. Zhang, and Dajum Chen, “Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites,” Macromolecules, 43, 2357, 2010.
[44] M. A. Rafiee, J. Rafiee, L. Srivastava, Z. Wang, H. Song, Z. Yu, and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small, 6, 179, 2010.
[45] S. R. Bakshi, J. E. Tercero, A. Agarwal, “Synthesis and characterization of multiwalled carbon nanotube reinforeced ultra high molecular weight polyethylene composite by electrostatic spraying technique,” Composites part A, 38, 2493, 2007.
[46] A. Moisala, Q. Li, I. A. Kinlcoh, A. H. Windle, “Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites,” Comp. Sci. and Tech., 66, 1285, 2006.
[47] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, and A. T. Johnson, and J. E. Fischer, “Carbon nanotube composites for thermal mangement,” Appl. Phys. Lett., 80, 2767, 2002.

[48] Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, “Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites,” Chem. Phys. Lett., 337, 43, 2001.
[49] S. U. S. Choi, Z. G. Zhang, W. Yu. F. E. lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., 79, 2252, 2001.
[50] Zhen-Kun Chen, Jial-Ping Yang, Qing-Qing Ni, Shao-Yun Fu, and Yong-Gang Huang, “Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties,” Polymer, 50, 4753, 2009.
[51] A. Ahmadi, and J. J. Freire, “Molecular dynamics simulation of miscibility in several polymer blends,” Polymer, 50, 4973, 2009.
[52] Q. Gen Zhang, Q. L. Liu, J. Y. Wu, Y. Chen, and A. M. Zhu, “Structure-related diffusion in poly(methyl methacrylate)/polyhedral oligomeric silsesquioxanes composites: A molecular dynamics simulation study,” J. Memb. Sci., 342, 105, 2009.
[53] W. Lee, and S. Ju, “Penetration and adsorption of a water droplet causing local deformation of the poly(methyl methacrylate) surface,” J. Phys. Chem. B, 113, 13269, 2009.
[54] W. Lee, and S. Ju, “Dynamical property of water droplets of different sizes adsorbed onto a poly(methyl methacrylate) surface,” Langmuir, 26, 438, 2010.
[55] P. F. Conforti, M. Prasad, and B. J. Garrison, “A technique to study doped ablation in polymethyl methacrylate using molecular dynamics simulation,” Appl. Surf. Sci., 255, 9588, 2009.
[56] P. F. Conforti, M. Prasad, and B. J. Garrison, “Elucidating the thermal, chemical, and mechanical mechanisms of ultraviolet ablation in poly(methyl methacrylate) vai molecular dynamics simulations,” Acco. Chem. Res., 41, 915, 2008.
[57] C. Wei, “Structural phase transition of alkane molecules in nanotube composites,” Phys. Rev. B, 76, 134104, 2007.
[58] C. Wei, “Adsorption of an alkane mixture on carbon nanotubes: selectivity and kinetics,” Phys. Rev. B, 80, 085409, 2009.
[59] Q. Zheng, Q. Xue, K. Yan, X. Gao, Q. Li, and L. Hao, “Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites,” J. Appl. Phys., 103, 044302, 2008.
[60] Q. Zheng, D. Xia, Q. Xue, K. Yan, X. Gao, and Q. Li, “Computational analysis of
effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system,” Appl. Surf. Sci., 255, 3534, 2009.
[61] V. A. Harmandaris, and K. Kremer, “Predicting polymer dynamics at multiple length and time scales,” Soft Matter, 5, 3920, 2009.
[62] P. Ilg, “Thermodynamically consistent coarse graining the non-equilibrium dynamics of nuentangled polymer melts,” J. Non-Newton. Fluid Mech., 165, 973, 2010.
[63] D. Fritz, V. A. Harmandaris, K. Kremer, and N. F. A. v. d. Vegt, “Coarse-Grained polymer melts based on isolated atomistic chains: Simulation of polystyrene of different tacticities,” Macromolecules, 42, 7559, 2009.
[64] T. Chen, A. Hynninen, R. K. Prud’home, I. G. Kevrekidis, and A. Z. Panagiotopoulos, “Coarse-grained simulations of rapid assembly kinetics for polystyrene-b-poly(ethylene oxide) copolymers in aqueous solutions,” J. Phys. Chem. B, 112, 16357, 2008.
[65] Z. Luo, and J. Jiang, “Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends,” Polymer, 51, 291, 2010.
[66] C. Soto-Figueroa, M. Rodriguez-Hidalgo, J. Martinez-Magadan, and L. Vicente, “Dissipative particle dynamics study of order-order phase transition of BCC, HPC, OBDD, and LAM structures of the poly(styrene)=poly(isoprene) diblock copolymer,” Macromolecules, 41, 3297, 2008.
[67] M. Rodriguez-Hidalgo, C. Soto-Figueroa, J. Martinez-Magadan, and L. Vicente, “Mesoscopic study of cylindrical phase of poly(styrene)-poly(isoprene) copolymer: order-order phase transitions by temperature control,” Polymer, 50, 4596, 2009.
[68] R. Toth, D. Voorn, J. Handgraaf, J. G. E. Fraaije, M. Fermeglia, S. Pricl, and P. Posocco, “Multiscale computer simulation studies of water-based montmorillonite/poly(ethylene oxide) nanocomposties,” Macromolecules, 42, 8260, 2009.
[69] X. Li, J. Guo, Y. Liu, and H. Liang, “Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study,” J. Chem. Phys., 130, 074908, 2009.
[70] W. Lee, S. Ju, and Y. Wang, “Modeling of polyethylene and poly(L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects structural arrangement,” J. Chem. Phys., 127, 064902, 2007.

[71] Y. Wang, W. Lee, and S. Ju, “Modeling of the polyethylene and Poly(L-lactide) triblock copolymer: A dissipative particle dynamics study,” J. Chem. Phys., 131, 124901, 2009.
[72] J. H. Irving, J. G. Kirkwood, “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics,” J. Chem. Phys., 18, 817, 1950.
[73] H. Sun, “COMPASS: an ab initio force-field optimized for condensed-phase applications- overview with details on alkane and benzene compounds,” J. Phys. Chem. B, 102, 7338, 1998.
[74] A. T. Hagler, S. Lifson,and P. Dauber, “Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields”, J. Am. Chem. Soc., 101, 5122, 1979.
[75] A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo,D. T. Nguyen, B. Prodhom, W. E. Reiher, III,B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, “All-atom empirical potemtial for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, 102, 3586, 1998.
[76] O. Teleman, B. Jonsson, S. Engstrom, “A molecular-dynamics simulation of a water model with intramolcular degrees of freedom”, Mol. Phys., 60, 193, 1987.
[77] M. P. Allen, D. J. Tildesley, Comput. Simul. Liquids, Clarendon Press:Oxford Science Publications: London, 1987.
[78] M. Parrinello, A. Rahman, J. Phys. (Paris), C6, 511, 1981.
[79] J. Qian, R. Hentschke, W. Knoll, “Superstructures of cyclodextrin derivatives on Au(111): a combined random plating-molecular dynamics approach”, Langmuir, 13, 7092, 1997.
[80] A. R. Bizzarri, B. Bonanni, G. Costantini, S. Cannistraro, “A combined atomic force microscopy and molecular dynamics simulation study on a plastocyanin mutant chemisorbed on a gold surface”, ChemPhysChem, 4, 1189, 2003.
[81] R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simalation,” J. Chem. Phys., 107, 11, 1997.
[82] R. D. Groot, and K. L. Rabone, “Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants,” Biophysical Journal, 81, 725, 2001.
[83] P. Espanol, P. Warren, “Statistical-mechanics of dissipative particle dynamics”, Europhys. Lett., 30, 191, 1995.
[84] D. C. Rapaport, “The art of molecular dynamics simulation”, Cambridge University Press: London, 1997.
[85] M. P. Allen, D. J. Tildesley, “Computer simulation of liquids”, Oxford Science: London, 1991.
[86] D. Frenkel, B. Smit, “Understanding molecular simulation”, Academic Press: San Diego, 1996.
[87] J. M. Haile, “Molecular dynamics simulation”, John Wiley & Sons: New York, 1992.
[88] A. Maiti, and Simon McGrother, “Bead-bead interaction parameter in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension”, J. Chen. Phys., 120, 1594, 2004.
[89] M. Belmares, M. Blanco, W. A. Goddard III, R. B. Ross, G. Caldwell, S. H. Chou, J. Pham, P. M. Olofson, C. Thomas, Hildebrand and Hansen Solubility Parameter from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors, J. Comput. Chem, 25, 1814, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code