Responsive image
博碩士論文 etd-0726113-125155 詳細資訊
Title page for etd-0726113-125155
論文名稱
Title
能誘發神經母細胞瘤SHSY5Y細胞自噬之抗有絲分裂藥物Combrestastatin A-4衍生物之篩選
Screening of Antimitotic Drug Combretastatin-A4 Derivatives That Are Capable of Inducing Autophagy in Neuroblastoma SHSY5Y Cell Line
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-09-10
關鍵字
Keywords
p62、LC3-II、有絲分裂、細胞自噬、Combrestastatin A-4
Combrestastatin A-4, autophagy, LC3-II, p62, mitosis
統計
Statistics
本論文已被瀏覽 5656 次,被下載 184
The thesis/dissertation has been browsed 5656 times, has been downloaded 184 times.
中文摘要
細胞自噬作用為清除胞內異常聚集蛋白及受損胞器,以回收再利用細胞資源的一種維持細胞生理恆定之重要機制。當細胞受到內、外壓力時,會啟動細胞自噬幫助細胞之生存。因此,異常的細胞自噬作用在諸如癌症、病原感染及神經退化性疾病致病上扮演極重要之角色。細胞自噬作用過程中藉由自噬體與溶酶體融合形成自噬溶酶體,並藉由酵素分解其內容物再利用。許多研究顯示,微管系統會參與將自噬體運送至溶酶體,或後期內含體的過程。因此,微管系統之動態平衡與細胞自噬作用正常運作有著密切的相關性。Combretastatin A-4 (簡稱CA-4)是一種具有抗微管聚合作用之天然化合物,具有抗腫瘤與抑制血管新生的能力,但CA-4藥物水溶性較差,故難以充分發揮其藥效作用。許多科學家針對結構簡單的CA-4天然物進行結構修飾及改造,期望能獲得生物活性更好及水溶解度提升之衍生物。本研究針對國立中山大學化學系吳明忠教授實驗室所合成的一系列新型CA-4烯雙炔衍生物,分別探討其細胞致死劑量IC50作用下對於神經母細胞瘤SHSY5Y及肝癌Hep3B是否與CA-4藥物類似,具有抑制微管聚合之特性。研究顯示九種新型衍生物中LO-OMe、LO-NH2、LO-py及HYH10f皆具有與CA-4控制組類似之抗微管效應。本研究亦利用流式細胞儀分析其是否會造成SHSY5Y細胞生長週期的變化,結果指出,具有抑制微管聚合之衍生物LO-OMe、LO-NH2及HYH10f皆與控制組CA-4一樣會導致細胞週期停滯於G2/M期。其餘新型烯雙炔之衍生物CPC14c、CPC20a、CPC15a、CPC19a及HYH10a其對微管形成及細胞週期皆無顯著作用活性。此結果顯示在各種不同位置修飾取代之烯雙炔衍生物對於神經母細胞株之抗微管聚合及細胞週期之效應不同。因微管與細胞自噬作用息息相關,且CA-4之烯雙炔類衍生物對於細胞自噬作用之調節仍未有文獻報導,因此本研究首先以細胞自噬標幟蛋白LC3-II及p62蛋白為監控對象,分析此群烯雙炔衍生物對神經母細胞瘤的細胞自噬作用之影響,結果顯示CA-4藥物及新型烯雙炔衍生物中LO-OMe、LO-NH2及CPC15a皆能誘導LC3-II與p62蛋白表現量上升,而HYH10f雖能提升LC3-II蛋白表現量,但其對p62蛋白表現量則有抑制效應。其餘新型烯雙炔衍生物於LC3-II及p62蛋白則無顯著影響。本研究之結果顯示新型CA-4烯雙炔衍生物依其修飾取代官能基之不同影響細胞自噬標幟蛋白LC3-II及p62蛋白表現作用各異,其對於細胞自噬作用效用之訊息機轉值得進一步加以探討,對其作用路徑之瞭解將有助於其在做為抗癌或治療神經退化性疾病藥物效用之評估。
Abstract
Autophagy is a process to clear unwanted protein aggregates and damaged organelles for recycling cellular resources. It is a critical mechanism to maintain cellular homeostasis for cellular survival when facing environmental stress. Therefore, aberrant autophagy might lead to the diseases such as cancer, pathogen infection and neurodegenerative diseases. Autophagic proecess depends on the fusion of autophagosome with lysosome for the enzymatic degradation of its content. Previous reports indicated the involvement of microtubule in mediating the fusion of autophagosome with either lysosome or late endosome. Therefore, proper dynamic for microtubule formation is critical for autophagic process. Combretastatin A-4 (CA-4) is a useful nature product exhibits anticancer and anti-angiogenesis activity by targeting microtubule formation. However, its clinical use is limited as it exhibits drawbacks such as high toxicity and low water solubility. To improve its clinical use, efforts are ongoing in synthesizing better CA-4 derivatives as anticancer drug candidates. A series of Combretastatin A-4 (CA-4) enediyne derivatives were synthesized by Professor Ming-Jung Wu in the Department of Chemistry of National Sun Yat-Sen University. In this thesis, research was focusing on the analyzing their effects on the microtubule formation in neuroblastoma SHSY5Y and hepatoma Hep3B cell lines by confocal microscopic analysis. The results showed that like CA-4, among 9 enediyne derivatives analyzed, LO-OMe、LO-NH2、LO-py and HYH10f could inhibit microtubule formation using dosage of their individual IC50. The results of flow cytometric cell cycle analysis showed that LO-OMe、LO-NH2 and HYH10f also had antimitotic effect in that they caused G2/M arrest of SHSY5Y cells. Whereas, the derivatives CPC14c, CPC20a, CPC15a, CPC19a and HYH10a had no effects on microtubule formation or cell cycle arrest. These results indicated the modification or replacement of different function groups might affect their activities differentially. We further investigated the effects of these CA-4 enediyne derivatives on the autophagic process by monitoring the level of two autophagic marker proteins LC3-II and p62 using western blot analysis. Our results showed that like CA-4, LO-OMe, LO-NH2 and CPC15a could lead to the increase of both LC3-II and p62. Compound HYH10f could increase LC3-II level, but not on the level of p62. The rest of the derivative compounds had no effects on the level of both LC3-II and p62. Our results again showed that functional modification might affects autophagic process differentially. The detail signaling mediating their effects on autophagy awaits further investigation. Understanding the molecular mechanism underlies might be helpful in evaluation of their use as therapeutic agents for cancer or neurodegenerative diseases.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
前言 1
研究動機 16
材料方法 17
結果 24
討論與總結 28
參考文獻 32
圖表 39
附錄 61
參考文獻 References
1. Jordan, M.A. and L. Wilson, Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol, 1998. 10: p. 123-30.
2. Jordan, M.A. and L. Wilson, Microtubules as a target for anticancer drugs. Nat Rev Cancer, 2004. 4: p. 253-65.
3. Mahindroo, N., et al., Antitubulin agents for the treatment of cancer – a medicinal chemistry update. Expert Opinion on Therapeutic Patents, 2006. 16: p. 647-691.
4. Nogales, E., et al., Structure of tubulin at 6.5 A and location of the taxol-binding site. Nature, 1995. 375: p. 424-7.
5. Wani, M.C., et al., Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 1971. 93: p. 2325-7.
6. Dumontet, C. and B.I. Sikic, Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol, 1999. 17: p. 1061-70.
7. Hadfield, J.A., et al., Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res, 2003. 5: p. 309-25.
8. Pettit, G.R., et al., Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J Nat Prod, 1987. 50: p. 119-31.
9. Cirla, A. and J. Mann, Combretastatins: from natural products to drug discovery. Nat Prod Rep, 2003. 20: p. 558-64.
10. Nam, N.H., Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Med Chem, 2003. 10: p. 1697-722.
11. Pettit, G.R., et al., Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia, 1989. 45: p. 209-11.
12. Pettit, G.R., et al., Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a). J Med Chem, 1995. 38: p. 1666-72.
13. Pettit, G.R., et al., Antineoplastic agents. 445. Synthesis and evaluation of structural modifications of (Z)- and (E)-combretastatin A-41. J Med Chem, 2005. 48: p. 4087-99.
14. Tron, G.C., et al., Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem, 2006. 49: p. 3033-44.
15. Nagaiah, G. and S.C. Remick, Combretastatin A4 phosphate: a novel vascular disrupting agent. Future Oncol, 2010. 6: p. 1219-28.
16. Lin, C.M., et al., Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry, 1989. 28: p. 6984-91.
17. Ravelli, R.B., et al., Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004. 428: p. 198-202.
18. David, J.C., et al., The Discovery and Development of the Combretastatins, in Anticancer Agents from Natural Products2005, CRC Press.
19. Pettit, G.R., et al., Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des, 1995. 10: p. 299-309.
20. Pettit, G.R. and M.R. Rhodes, Antineoplastic agents 389. New syntheses of the combretastatin A-4 prodrug. Anticancer Drug Des, 1998. 13: p. 183-91.
21. Pettit, G.R., et al., Antineoplastic agents. 410. Asymmetric hydroxylation of trans-combretastatin A-4. J Med Chem, 1999. 42: p. 1459-65.
22. Messaoudi, S., et al., Isocombretastatins a versus combretastatins a: the forgotten isoCA-4 isomer as a highly promising cytotoxic and antitubulin agent. J Med Chem, 2009. 52: p. 4538-42.
23. Shirai, R., et al., Asymmetric synthesis of antimitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. Bioorg Med Chem Lett, 1998. 8: p. 1997-2000.
24. Schobert, R., et al., 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J Med Chem, 2010. 53: p. 6595-602.
25. Wang, L., et al., Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J Med Chem, 2002. 45: p. 1697-711.
26. Nicolaou, K.C., A.L. Smith, and E.W. Yue, Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci U S A, 1993. 90: p. 5881-8.
27. Provot, O., et al., Synthetic approach to enyne and enediyne analogues of anticancer agents. Tetrahedron Letters, 2005. 46: p. 8547-8550.
28. Lo, Y.H., et al., Design, synthesis, biological evaluation and molecular modeling studies of 1-aryl-6-(3,4,5-trimethoxyphenyl)-3(Z)-hexen-1,5-diynes as a new class of potent antitumor agents. Eur J Med Chem, 2013. 62: p. 526-33.
29. 黃怡華, 合成具烯雙炔之Combretastatin A-4類似物及生物活性評估, in 國立中山大學化學系2011, 國立中山大學化學系.
30. 林佳穎, 設計與合成具苯胺與烯雙炔結構之新抗癌藥物 in 國立中山大學化學系2012, 中山大學化學系.
31. Ravikumar, B., et al., Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev, 2010. 90: p. 1383-435.
32. Mortimore, G.E. and A.R. Poso, Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr, 1987. 7: p. 539-64.
33. Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science, 2000. 290: p. 1717-21.
34. Thorburn, A., Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis, 2008. 13: p. 1-9.
35. Yoshimori, T., Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun, 2004. 313: p. 453-8.
36. Lum, J.J., R.J. DeBerardinis, and C.B. Thompson, Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol, 2005. 6: p. 439-48.
37. Yorimitsu, T. and D.J. Klionsky, Autophagy: molecular machinery for self-eating. Cell Death Differ, 2005. 12 Suppl 2: p. 1542-52.
38. Martinez-Vicente, M. and A.M. Cuervo, Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol, 2007. 6: p. 352-61.
39. Jaeger, P.A. and T. Wyss-Coray, All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener, 2009. 4: p. 16.
40. Lavallard, V.J., et al., Autophagy, signaling and obesity. Pharmacol Res, 2012. 66: p. 513-25.
41. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8: p. 741-52.
42. Funderburk, S.F., Q.J. Wang, and Z. Yue, The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol, 2010. 20: p. 355-62.
43. Axe, E.L., et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 2008. 182: p. 685-701.
44. Hanada, T., et al., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007. 282: p. 37298-302.
45. Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6: p. 505-10.
46. Dutta, D., et al., Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res, 2012. 110: p. 1125-38.
47. Atlashkin, V., et al., Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol Cell Biol, 2003. 23: p. 5198-207.
48. Paglin, S., et al., A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res, 2001. 61: p. 439-44.
49. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature, 2008. 451: p. 1069-75.
50. Levine, B. and V. Deretic, Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol, 2007. 7: p. 767-77.
51. Marino, G. and C. Lopez-Otin, Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci, 2004. 61: p. 1439-54.
52. Funderburk, S.F., B.K. Marcellino, and Z. Yue, Cell "self-eating" (autophagy) mechanism in Alzheimer's disease. Mt Sinai J Med, 2010. 77: p. 59-68.
53. Adhami, F., et al., Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol, 2006. 169: p. 566-83.
54. Zheng, S., et al., Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet, 2010. 6: p. e1000838.
55. Cully, M., et al., Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer, 2006. 6: p. 184-92.
56. Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006. 126: p. 121-34.
57. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402: p. 672-6.
58. Yousefi, S., et al., Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 2006. 8: p. 1124-32.
59. Marino, G., et al., Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem, 2007. 282: p. 18573-83.
60. Liang, C., et al., Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006. 8: p. 688-99.
61. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer, 2007. 7: p. 961-7.
62. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10: p. 51-64.
63. Mathew, R., et al., Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 2007. 21: p. 1367-81.
64. Cuzick, J., et al., Preventive therapy for breast cancer: a consensus statement. Lancet Oncol, 2011. 12: p. 496-503.
65. Bursch, W., et al., Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis, 1996. 17: p. 1595-607.
66. Wang, J., et al., Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem, 2008. 283: p. 25596-605.
67. Fleet, J.C., et al., Vitamin D and cancer: a review of molecular mechanisms. Biochem J, 2012. 441: p. 61-76.
68. Grumati, P., et al., Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 2011. 7: p. 1415-23.
69. Harriss, D.J., et al., Lifestyle factors and colorectal cancer risk (2): a systematic review and meta-analysis of associations with leisure-time physical activity. Colorectal Dis, 2009. 11: p. 689-701.
70. Abedin, M.J., et al., Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ, 2007. 14: p. 500-10.
71. White, E. and R.S. DiPaola, The double-edged sword of autophagy modulation in cancer. Clin Cancer Res, 2009. 15: p. 5308-16.
72. Horsman, M.R., A.B. Bohn, and M. Busk, Vascular targeting therapy: potential benefit depends on tumor and host related effects. Exp Oncol, 2010. 32: p. 143-8.
73. White, E., Role of the metabolic stress responses of apoptosis and autophagy in tumor suppression. Ernst Schering Found Symp Proc, 2007: p. 23-34.
74. Yeung, S.C., et al., Combination chemotherapy including combretastatin A4 phosphate and paclitaxel is effective against anaplastic thyroid cancer in a nude mouse xenograft model. J Clin Endocrinol Metab, 2007. 92: p. 2902-9.
75. Perri, F., et al., Anaplastic thyroid carcinoma: A comprehensive review of current and future therapeutic options. World J Clin Oncol, 2011. 2: p. 150-7.
76. Ding, X., et al., Combretastatin A4 phosphate induces programmed cell death in vascular endothelial cells. Oncol Res, 2011. 19: p. 303-9.
77. Pedrotti, B., et al., Characterization of microtubule-associated protein MAP1B: phosphorylation state, light chains, and binding to microtubules. Biochemistry, 1996. 35: p. 3016-23.
78. Aplin, A., et al., Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol, 1992. 152: p. 458-66.
79. Geeraert, C., et al., Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem, 2010. 285: p. 24184-94.
80. Ravikumar, B., et al., Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 2005. 37: p. 771-6.
81. Cooper, G.M., The cell : a molecular approach. 5th ed. ed, ed. R.E. Hausman2009, Washington, D.C. :: ASM Press ;.
82. Sloboda, R.D., et al., Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A, 1975. 72: p. 177-81.
83. Wiche, G., C. Oberkanins, and A. Himmler, Molecular structure and function of microtubule-associated proteins. Int Rev Cytol, 1991. 124: p. 217-73.
84. Weingarten, M.D., et al., A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A, 1975. 72: p. 1858-62.
85. Mandelkow, E. and E.M. Mandelkow, Microtubules and microtubule-associated proteins. Curr Opin Cell Biol, 1995. 7: p. 72-81.
86. Berkowitz, S.A., et al., Separation and characterization of microtubule proteins from calf brain. Biochemistry, 1977. 16: p. 5610-7.
87. Kuznetsov, S.A. and V.I. Gelfand, 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett, 1987. 212: p. 145-8.
88. Seidenbecher, C.I., et al., Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol, 2004. 336: p. 957-70.
89. Pankiv, S., et al., FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol, 2010. 188: p. 253-69.
90. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21: p. 2861-73.
91. Nakatogawa, H., et al., Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 2009. 10: p. 458-67.
92. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000. 19: p. 5720-8.
93. Goldstein, G., et al., Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A, 1975. 72: p. 11-5.
94. Schlesinger, D.H., G. Goldstein, and H.D. Niall, The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry, 1975. 14: p. 2214-8.
95. Sanchez, P., et al., Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol Cell Biol, 1998. 18: p. 3069-80.
96. Kirkin, V., et al., A role for ubiquitin in selective autophagy. Mol Cell, 2009. 34: p. 259-69.
97. Tron, G.C., et al., Synthesis and cytotoxic evaluation of combretafurazans. J Med Chem, 2005. 48: p. 3260-8.
98. Ichimura, Y., et al., Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy, 2008. 4: p. 1063-6.
99. Komatsu, M., et al., Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007. 131: p. 1149-63.
100. Webb, J.L., B. Ravikumar, and D.C. Rubinsztein, Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol, 2004. 36: p. 2541-50.
101. Xu, Y., et al., Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem, 2006. 281: p. 19179-87.
102. Lin, H.L., et al., Combretastatin A4-induced differential cytotoxicity and reduced metastatic ability by inhibition of AKT function in human gastric cancer cells. J Pharmacol Exp Ther, 2007. 323: p. 365-73.
103. Dumontet, C. and M.A. Jordan, Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov, 2010. 9: p. 790-803.
104. Reddy, M.V., et al., (Z)-1-aryl-3-arylamino-2-propen-1-ones, highly active stimulators of tubulin polymerization: synthesis, structure-activity relationship (SAR), tubulin polymerization, and cell growth inhibition studies. J Med Chem, 2012. 55: p. 5174-87.
105. Zhang, Q., et al., Highly potent triazole-based tubulin polymerization inhibitors. J Med Chem, 2007. 50: p. 749-54.
106. 羅宇翔, 設計與合成新型烯雙炔與其衍生物為抗有絲分裂試劑
in 高雄醫學大學藥學系2009, 高雄醫學大學藥學系.
107. 陳佩婍, 設計與合成含烯雙炔結構之抗腫瘤藥物, in 國立中山大學化學系2011, 國立中山大學化學系.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code