Responsive image
博碩士論文 etd-0726113-142609 詳細資訊
Title page for etd-0726113-142609
論文名稱
Title
工業都市及海島地區大氣汞時空流佈、氣固相分佈及 長程傳輸之影響
Tempospatical Distribution, Gas-solid Partition, and Long-range Transportation of Atmospheric Mercury at an Industrial City and Offshore Islands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
172
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-03
繳交日期
Date of Submission
2013-08-26
關鍵字
Keywords
大氣汞、氣固相分佈、相關性分析、逆軌跡模式、長程傳輸、時空流佈
backward trajectory simulation, long-range transportation, correlation analysis, gas-particulate partition, tempospatial variation, Atmospheric mercury
統計
Statistics
本論文已被瀏覽 5729 次,被下載 107
The thesis/dissertation has been browsed 5729 times, has been downloaded 107 times.
中文摘要
大氣汞研究議題已成為世界各國重視之環境焦點之一,本研究利用改良之大氣汞採樣及分析方法,從小尺度至大尺度,分別針對四種不同區域進一步量測大氣汞時空流佈、氣固相分佈、與氣象參數及法規空氣污染物相關性分析、長程傳輸途徑及與其他固定污染源汞濃度之比較。
就半導體工業園區大氣汞濃度濃度變化趨勢而言,總氣態元素汞(total gaseous elemental mercury; TGM)及顆粒態汞(particulate mercury; Hgp)濃度範圍分別介於3.30-6.89 ng/m3及0.06-0.14 ng/m3,而TGM及Hgp最高濃度分別為10.33 ng/m3及0.26 ng/m3,其氣固相分佈以TGM為主,TGM及Hgp分別介於92.59-99.01%和0.99-7.41%。整體而言,採樣期間高、低濃度之TGM分別出現於冬季及夏季,反觀Hgp則與季節變化較無相關性。此外,盛行風向扮演了影響TGM濃度高低之關鍵角色,下風處TGM濃度明顯高於上風處,此結果可說明半導體工業園區為複雜之含汞污染物排放源,亦為成為鄰近區域大氣汞濃度增加之主要原因。
就汞污染整治場址濃度變化趨勢而言,TGM及Hgp濃度範圍分別介於5.56-12.60 ng/m3及0.06-0.22 ng/m3,而落塵之汞沉降通量(deposition fluxes of dust-fall mercury; DFM)濃度範圍分別介於27.0-56.8 g/km2-month。其中,TGM和Hgp的最高濃度分別為38.95和0.58 ng/m3,其氣固相分佈則以TGM為主,TGM及Hgp分別介於97.42-99.87%和0.13-2.58%。整體而言,春季及夏季環境含汞濃度較秋季及冬季來得高,而汞污染整治場址之大氣汞排放熱點則為廢棄之氯鹼工廠,於開挖整治期間TGM最高濃度可達平均濃度之2-3倍。此外,當汞污染整治場址區域盛行方向吹南風時,對於場址北部之敏感點環境大氣汞濃度將有明顯之增加,對於敏感點之居民健康恐產生影響。
就高雄重工業都會區濃度變化趨勢而言,TGM及Hgp濃度範圍分別介於2.38-9.41 ng/m3及0.02-0.59 ng/m3,大氣汞最高濃度則分別可達9.41 ng/m3及0.59 ng/m3,其氣固相分佈則以TGM為主,TGM及Hgp分別介於92.71-99.17%及0.83-7.29%。整體而言,大氣汞濃度為乾季較濕季來得高,小港地區則為大氣汞濃度最高之區域。此外,高雄都會區大氣汞排放熱點可區分為南高雄之鋼鐵工業區及北高雄之石化工業區。
就澎湖群島沿海背景濃度變化趨勢而言,澎湖群島TGM平均濃度為3.17±1.17 ng/m3,其濃度範圍則介於1.17-8.63 ng/m3,且日間TGM濃度明顯較夜間來得高,春季為澎湖群島TGM最高之季節,夏季則接近北半球背景濃度(1.8 ng/m3)。就逆軌跡模式而言,澎湖群島TGM濃度增加,主要是受到從大陸華北地區、華東地區及中國南方之污染氣團長程傳輸之影響,而TGM平均濃度最低之夏季,則主要來自相對乾淨的南中國海,故推測量測期間之風向及污染物傳輸路徑,應為影響澎湖群島TGM濃度變化之主因。此外,就大氣汞濃度、法規空氣污染物及氣象參數相關性分析而言,TGM濃度與Hgp、SO2、NOx、CO、環境溫度及紫外線強度呈現正相關,而與O3、相對溼度及風速呈現負相關;Hgp濃度則與TGM、SO2、NOx及O3呈現正相關,而與環境溫度、相對溼度及風速呈現負相關。
Abstract
The issues of atmospheric mercury have been discussed more popularly in the world. This study measured atmospheric mercury by using the modified sampling and analytical methods from four cases of small-scale regions to large-scale regions, and further investigated the tempospatial variation of atmospheric mercury, gas-particulate partition, the correlation analysis of mercury concentration with meteorological parameters and criteria air pollutants, the transportation routes of mercury, and the comparison of mercury concentration in urban areas and other stationary sources.
First of all, an one-year field measurement results at a semi-conductor manufacturing complex showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 3.30-6.89 and 0.06-0.14 ng/m3, respectively, while the highest 24-hr TGM and Hgp concentrations were 10.33 and 0.26 ng/m3, respectively. Atmospheric mercury apportioned as 92.59-99.01% TGM and 0.99-7.41% Hgp. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, while the concentration of Hgp did not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semi-conductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.
In an unique mercury-contaminated remediation site, an one-year field measurement results showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, while the seasonal averaged deposition fluxes of dust-fall mercury were in the range of 27.0 to 56.8 g/km2-month. The maximum concentrations of TGM and Hgp were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% TGM and 0.13-2.58% Hgp. As a whole, the concentrations of mercury species were higher in the spring and summer than those in the winter and fall. The southern prevailing winds generally brought higher mercury concentrations, while the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of TGM at the mercury-contaminated remediation site observed that TGM concentrations during the open excavation period were 2 to 3 times higher than those during the non-excavation period.
In a heavily polluted industrial city, Kaohsiung, field measurement results showed that TGM and Hgp concentrations were in the range of 2.38-9.41 and 0.02-0.59 ng/m3 with the highest concentrations of 9.41 and 0.59 ng/m3, respectively. Moreover, the partition of atmospheric mercury was apportioned as 92.71-99.17% TGM and 0.83-7.29% Hgp. As a whole, the concentrations of mercury species in the dry season were higher than those in the wet season, no matter of TGM or Hgp concentration. The TGM and Hgp concentrations at Hsiao-kang site was the highest in Kaohsiung City. The hot spots of atmospheric mercury were allocated at two regions in Kaohsiung City, including a steel industrial complex in the south and a petrochemical industrial complex in the north.
In a coastal site of the Penghu Islands, the field measurement results showed that the average TGM concentration during the monitoring periods was 3.17±1.17 ng/m3 with the range of 1.17-8.63 ng/m3, as the highest concentration being observed in spring, while the average TGM concentrations in the daytime were typically higher than that at nighttime. Moreover, the lowest average TGM concentration of 1.81±0.15 ng/m3 was observed in summer. The backward trajectory simulation results showed that the elevated TGM concentrations could be transported from either North China, East China, or South China to the Penghu Islands, while those originated from South China Sea had the lowest contribution to the TGM levels of the Penghu Islands. Therefore, prevailing wind direction and air mass transportation routes potentially playing the critical roles on the variation of TGM concentration at the Penghu Islands. Furthermore, correlation analysis results indicated that the TGM concentration correlated positively with SO2, NOx, CO, ambient temperature, UVB and negatively with O3, relative humidity, and wind speed. While, Hgp correlated positively with SO2, NOx, O3 and negatively with ambient temperature, relative humidity, and wind speed.
目次 Table of Contents
AUTHORIZATION OF RESEARCH DISSERTATION I

ACKNOWELEDGEMENTS II

摘要 III
ABSTRACT V

TABLE OF CONTENTS VIII

LIST OF TABLES XI

LIST OF FIGUARES XIII



CHAPTER 1 INTRODUCTION 1
1.1 Background and Objectives 1
1.2 Structure and Scope 5
CHAPTER 2 REVIEW OF LITERATURES 10
2.1 Physicochemical Characteristics of Mercury 10
2.2 Speciation and Composition of Atmospheric Mercury in Ambient Air 12
2.3 Sources, Transformation, and Cycle of Atmospheric Mercury 14
2.4 Health Effects of Atmospheric Mercury 21
2.5 Overview of Atmospheric Mercury Researches 25
CHAPTER 3 RESEARCH APPROACHES 33
3.1 Overview of the Measurement Methods for Atmospheric Mercury 33
3.2 Improvement of the methods for TGM and Hgp Measurement 37
3.3 Instrumental and Model Analysis 45
CHAPTER 4 TEMPOSPATIAL VARIATION OF ATMOSPHERIC MERCURY AND ITS GAS-PARTICULATE PARTITION IN THE VICINITY OF A SEMI-CONDUCTOR MANUFACTURING COMPLEX 50
4.1 Introduction 50
4.2 Selection and Description of Sampling Sites 51
4.3 Partition of TGM and Hgp 51
4.4 Seasonal Variation of TGM and Hgp 54
4.5 Spatial Distribution of TGM and Hgp 56
CHAPTER 5 PARTITION AND TEMPOSPATIAL VARIATION OF GASEOUS AND PARTICULATE MERCURY AT A MERCURY-CONTAMINATED REMEDIATION SITE 63
5.1 Introduction 63
5.2 Selection and Description of Sampling Sites 64
5.3 Seasonal Variation and Partition of TGM and Hgp 66
5.4 Spatial Distribution of TGM and Hgp 71
5.5 Hourly Variation of Mercury Emission from Open Excavation 74
5.6 Deposition Flux of Wet/Dry Mercury 76
CHAPTER 6 TEMPOSPATIAL VARIATION AND PARTITION OF ATMOSPHERIC MERCURY IN AMBIENT AIR OF AN INDUSTRIAL CITY 79
6.1 Introduction 79
6.2 Selection and Description of Sampling Sites 80
6.3 Seasonal Variation and Partition of TGM and Hgp 81
6.4 Spatial Distribution of TGM and Hgp 87
CHAPTER 7 MEASUREMENT OF TOTAL GASEOUS MERCURY AT THE MARINE BOUNDARY LAYER AND THE ASSOCIATED LONG-RANGE TRANSPORTIATION 90
7.1 Introduction 90
7.2 Selection and Description of Monitoring Sites 91
7.3 Seasonal and Daily Variation of TGM Concentration 94
7.4 Hourly Variation of TGM Concentration 98
7.5 Transportation Routes of TGM toward the Penghu Islands 100
CHAPTER 8 COMPARISON OF MERCURY LEVELS AND CORRELATION ANALYSIS 110
8.1 Comparison of TGM and Hgp Levels with Other Stationary Sources 110
8.2 Comparison of TGM and Hgp Concentrations with Major Cities of Taiwan and Other Countries 113
8.3 Correlation of TGM with Meteorological Parameters and Criteria Air Pollutants 117
CHAPTER 9 CONCLUSIONS AND SUGGESTIONS 120
9.1 Conclusions 120
9.2 Suggestions 124
REFERENCES 126
APPENDIX A Calibration Curves of Gaseous and Particulate Mercury A-1
APPENDIX B Chemical Analytical Data of Manual and Auto Mercury Monitoring B-1
參考文獻 References
Abbott, M.L., Lin, C.J., Martian, P. and Einerson, J.J., 2008. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho, Appl. Geochem., 23(3), 438-453.
Agency for Toxic Substances and Disease Registry (ATSDR), 1999. Toxicological profile for mercury, U.S. department of health and human services, March.
Ames, M., Gully, G. and Olmez, I., 1998. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York, Atmos. Environ., 32(5), 865-872.
Baeyens, W., Leermakers, W., Papina, T., Saprykin, A., Brion, N., Noyen, J., De Gieter, M., Elskens, M. and Goeyens, L., 2003. Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary Fish, Arch. Environ. Contam. Toxicol., 45, 498–508.
Berg, T., Bartnicki, J., Munthe, J., Lattila, H., Hrehoruk, J. and Mazur, A., 2001. Atmospheric mercury species in the European Arctic: measurements and modeling, Atmos. Environ., 35, 2569-2582.
Burke, I.C., Lauenroth, W.K. and Coffin, D.P., 1995. Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program, Ecol. Appl., 5, 793-801.
Blanchard, P., Froude, F.A., Martin, J.B., Clark, H.D. and Woods, J.T., 2002. Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada, Atmos. Environ., 36, 3735-3743.
Boening, D.W., 2000. Ecological effects, transport, and fate of mercury : a general review, Chemos., 40, 1335-1351.
Brown, T.D., Smith, D.N., Hargis, R.A. Jr. and O’Dowd, W.J., 1999. Mercury measurement and its control: what we know, have learned, and need to further investigate, J. Air Waste Manage. Assoc., 49, 628-640.
Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B. and Rappenglück, B., 2010. Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas, Atmos. Environ., 44(33), 4045-4055.
Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Penzias, P.W., Kato, S., Takami, A., Hatakeyama, S. and Kajii, Y., 2008. Reactive and Particulate Mercury in the Asian Marine Boundary Layer. Atmos. Environ., 42, 7988-7996.
Chang, J.W., Pai, M.C., Chen, H.L, Guo, H.R., Su, H.J. and Lee, C.C., 2008. Cognitive function and blood methylmercury in adults living near a deserted chloralkali factory, Environ. Res., 108, 334-339.
Chang, J.W., Chen, H.L., Su, H.J., Liao P.C., Guo H.R. and Lee, C.C., 2011. Simultaneous exposure of non-diabetics to high levels of dioxins and mercury increases their risk of insulin resistance, J. Hazard. Mater., 185, 749–755.
Chen, L., Liu, M., Xu, Z., Fan, R., Tao, J., Chen, D., Zhang, D., Xie, D. and Sun, J., 2013. Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons, Atmos. Environ., 77, 757-766.
Cheng, I., Lu, J. and Song, X., 2009. Studies of potential sources that contributed to atmospheric mercury in Toronto, Canada, Atmos. Environ., 43(39), 6145-6158.
Clarkson, T.W., 1997. The toxicology of mercury, Crit. Rev. Clin. Lab. Sci., 34, 369-403.
Clarkson, T.W. and Magos, L., 2006. The toxicity of mercury and its compounds, Crit. Rev. Toxicol., 36, 609-662.
Ci, Z,J., Zang, X.S., Wang, Z.W., Niu, Z.C., Diao, X.Y. and Wang S.W., 2011. Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmos. Chem. Phys. Discuss., 11, 2881-2892.
Couillard, C.M., Macdonald, R.W., Courtenay, S.C. and Palace, V.P., 2008. Chemical–environment interactions affecting the risk of impacts on aquatic organisms: a review with a Canadian perspective-interactions affecting exposure, Environ. Rev., 16, 1-17.
Crinnion, W.J., 2000. Environmental medicine, part three: long-term effects of cotoxicol, Eviron. Saf., 21, 348-364.
Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J.M. and Triassi, M., 2008. Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure, Environ. Int., 34, 162-167.
Dommergue, A., Ferrari, C.P., Planchon, F.A.M and Boutron, C.F., 2002. Influence of anthropogenic sources on total gaseous mercury variability in grenoble suburban air (France), Sci. total Environ., 297, 203-213.
Ebinghaus, R., Jennings, S., Schroeder, W.H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Muhleck, T., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D. and Xiao, Z., 1999. International field intercomparison measurements of atmospheric merucry species at Macehead, Ireland, Atmos. Environ., 33, 3063-3073.
Fang, F., Wang, Q. and Li, J., 2004. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate, Sci. Total Environ., 330(1-3), 159–170.
Fang, G.C., Chen, J.C., Wu, Y.S., Huang, W.J. and Liu, C.K., 2010. Application of dry deposition models to estimate ambient air particulate and particulate-bound mercury Hg(p) dry deposition, Environ. Eng. Sci., 28, 63-70.
Fang, G.C., Yang, I.L. and Liu, C.K., 2010. Measure and modeling the ambient air particles and particle bound mercury Hg(p) at a traffic sampling site, Atmos. Res., 97, 97-105.
Fang, G.C., Huang, Y.L. and Huang, J.H., 2010. Study of atmospheric metallic elements pollution in Asia during 2000-2007, J. Hazard. Mater., 180, 115-121.
Fang, G.C., Yang, I.L. and Liu, C.K., 2010. Estimation of atmospheric particulates and dry deposition particulate-bound mercury Hg(p) in Sha-Lu, Taiwan, Aerosol Air Qual. Res., 10(5), 403-413.
Fang, G.C., Tsai, J.H., Lin, Y.H. and Chang, C.Y, 2012. Dry deposition of atmospheric particle-bound mercury in the middle Taiwan, Aerosol Air Qual. Res., 12, 1298–1308.
Fawer, R.F., Ribaupierre, D.Y., Guillemin, M.P., Berode, M. and Lob, M., 1983. Measurement of hand tremor induced by industrial exposure to metallic mercury, Br. J. Ind. Med., 40(2), 204-212.
Feng, X.B., Sommar, J., Lindqvist, O. and Hong, Y.T., 2002. Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China, Water Air Soil Poll., 139, 311-324.
Feng, X.B., Tang, S.L., Shang, L.H., Yan, H.Y., Sommar, J. and Lindqvist, O., 2003. Total gaseous mercury in the atmosphere of Guiyang, PR China, Sci. Total Environ., 304, 61–72.
Feng X.B. and Qiu G.G., 2008. Mercury pollution in Guizhou, China- an overview, Sci. Total Environ., 400, 227-237.
Ferrara, R., Seritti, A., Barghiani, C. and Petrosino, A., 1980. Improved instrument for mercury determination by atomic fluorescence spectrometry with a high-frequency electrodeless discharge lamp, Analytic. Chem., 117, 391-395.
Friedli, H.R., Radke, L.F., Lu, J.Y., Banic, C.M., Leaitch, W.R. and MacPherson, J.I., 2003. Mercury emissions from burning of biomass from temperate Northern American forests: laboratory and airborne measurements, Atmos. Environ., 37, 253-267.
Friedli, H. R., Radke, L. F., Prescott, R., Li, P., Woo, J.H. and Carmichael, G.R., 2004. Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications, J. Geophys. Res., 109, D19S25: doi: 10.1029/2003JD004244.
Friedli, H.R., Arellano JR., A.F., Geng, F., Cai, C. and Pan, L., 2011. Measurements of atmospheric mercury in Shanghai during September 2009, Atmos. Chem. Phys. Discuss., 10, 30279-30303.
Fu, X., Feng X., Zhu W., Zheng W. and Wang S., 2008. Total particulate and reactive gaseous mercury in ambient air in the eastern slope of Mt. Gongga area, Appl. Geochem., 23(3), 408-418.
Fu, X.W., Feng, X.B., Wang, S.F., Rothenberg, S., Shang, L.H., Li, L. and Qiu, G., 2009. Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: implications for industrial and domestic mercury emissions in remote areas in China, Sci. Total Environ., 407, 2306-2314.
Fu, X.W., Feng, X.B., Dong, Z.Q., Yin, R.S., Wang, J.X., Tang, Z.R. and Zhang, H., 2010. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China, Atmos. Chem. Phys. Discuss., 9, 23465-23504.
Fu, X.W., Feng X.B., Qiu, G., Shang, L. and Zhang, H., 2011. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ., 45(25), 4205-4212.
Gabriel, M., Williamson, D., Brooks, S. and Lindberg, S., 2005. Atmospheric speciation of mercury in two contrasting southeastern U.S. air sheds, Atmos. Environ., 39, 4947-4958.
Galbreath, K.C. and Zygarlicke, C.J., 2000. Mercury transformations in coal combustion flue gas, Fule Process. Teachnol., 65, 289-310.
Golubeva, N., Burtseva, L. and Matishov, G., 2003. Measurements of mercury in the near-surface layer of the atmosphere of Russian Arctic, Sci. Total Environ., 306, 3-9.
Gratz, L.E., Keeler, G.J., Marsik, F.J., Barres, J.A. and Dvonch, J.T., 2013. Atmospheric transport of speciated mercury across Southern Lake Michigan: influence from emission sources in the Chicago/Gary urban area, Sci. Total Environ., 448, 84-95.
Hladikova, V., Petrik, J., Jursa, S., Ursinyova, M. and Kocan, A., 2001. Atmospheric mercury levels in the Slovak Republic, Chemos., 45, 801-806.
Huang, J.Y., Liu, C.K., Huang, C.S. and Fang G.C., 2012. Atmospheric mercury pollution at an urban site in central Taiwan: mercury emission sources at ground level, Chemos., 87(5), 579-585.
Huang, J., Kang, S.C., Wang, S.X., Wang, L., Zhang, Q.G., Guo, J.M., Wang K., Zhang, G.S. and Tripathee, L., 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet, Sci. Total Environ., 447, 123-132.
Hylander, L.D. and Meili, M., 2003. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions, Sci. Total Environ., 304, 13-27.
Iverfeldt, A. and Lindqvist, O., 1986. Atmospheric oxidation of elemental mercury by ozone in the aqueous phase, Atmos. Environ., 20, 1567-1573.
Jaffe D., Prestbo E., Swartzendruber P., Weiss-Penzias P., Kato S., Takami A., Hatakeyama S. and Kajii, Y., 2005. Export of atmospheric mercury from Asia, Atmos. Environ., 39(17), 3029-3038.
Jen, Y.H., Yuan, C.S., Lin, Y.C., Lee, C.G., Hung, C.H., Tsai, C.M., Tsai, H.H. and Ie, I.R., 2011. Partition and tempospatial variation of gaseous and particulate mercury at a unique mercury-contaminated remediation site, J. Air Waste Manage. Assoc., 61, 1115-1123.
Jen, Y.H., Yuan, C.S., Hung, C.H., Ie, I.R. and Tsai, C.M., 2013. Tempospatial variation and partition of atmospheric mercury during wet and dry seasons at sensitivity sites within a heavily polluted industrial city, Aerosol Air Qual. Res., 13, 13-23.
John, B.S. and Gary, R.K., 2001. Clinical environmental health and toxic exposures, Mercury, ISBN/ISSN: 9780683080278, 867-879.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F. and Volpicelli, G., 1996. Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon, Combust. Sci. Technol., 112, 163-174.
Kilgroe, J.D., 1996. Control of dioxin, furan, and mercury emissions from municipal waste combustors, J. Hazard. Mater., 47, 163-194.
Kim, J.P. and Fitzgerald, W.F., 1986. Sea-air partitioning of mercury in the equatorial Pacific Ocean, Science, 231(4742), 1131-1133.
Kim, K.H., Kim, M.Y., Kim, J. and Lee, G.W., 2002. The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late March 2002, Atmos. Environ., 36, 3413–3427.
Kim, K.H., Yoon, Y.O., Brown, R.J.C., Jeon, E.C., Sohn, J.R., Jung, K., Park, C.G. and Kim, I.S., 2013. Simultaneous monitoring of total gaseous mercury at four urban monitoring stations in Seoul, Korea. Atmos. Res., 132-133, 199-208.
Kim, S.H., Han, Y.J., Holsen, T.M. and Yi, S.M., 2009. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, Atmos. Environ., 43(20), 3267-3274.
Kock, H.H., Bieber, E., Ebinghaus, R., Spain, T.G. and Thees, B., 2005. Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany, Atmos. Environ., 39, 7549-7556.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M. and Muramatsu, T., 1998. Lessons from minamata mercury pollution, Japan-after a continuous 22 years of observation, Water Sci. Tech., 38, 187-193.
Kuo, T.H., Chang, C.F., Urba, A. and Kvietkus, K., 2006. Atmospheric gaseous mercury in northern Taiwan, Sci. Total Environ., 368, 10-18.
Landis, M.S., Stevens, R.K. and Schaedlich, F., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air, Environ. Sci. Technol., 36(13), 3000–3009.
Landis, M.S., Keeler, G.J., Khalid, I.A.W. and Stevens, R.K., 2004. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition, Atmos. Environ., 38, 613–622.
Laurier, F.J.G., Mason, R.P., Whalin, L. and Kato, S., 2003. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry, J. Geophys. Res., 108(D17), 4529-4541.
Lee, D.S., Dollard, G.J. and Pepler, S., 1998. Gas-phase mercury in the atmosphere of the United Kingdom, Atmos. Environ., 32(5), 855-864.
Li, H.B., Yu, S., Li, G.L., Deng, H., Xu, B., Gao, J.B., Hong, Y.W. and Wong, M.H., 2013. Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts. Sci. Total Environ., 445-446, 117-125.
Li, P., Feng, X.B., Qiu, G.L., Shang, L.H. and Li, Z.G., 2009. Mercury pollution in Asia: A review of the contaminated sites, J. Hazard. Mater., 168, 591-601.
Li, P., Feng, X.B., Qiu, G.L., Shang, L.H., Wang, S. and Meng, B, 2009. Atmospheric mercury emission from artisanal mercury mining in Guizhou Province, Southwestern China, Atmos. Environ. 43(14), pp. 2247-2251.
Liang, Y.X., Sun, R.K., Sun, Y., Chen, Z.Q. and Li, L.H., 1993. Psychological effects of low exposure to mercury vapor: application of a computer-administered neurobehavioral evaluation system, Environ. Res., 60(2), 320-327.
Lin, C.J. and Pehkonen, S.O., 1997. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmos. Environ., 31, 4125-4137.
Lin, C.J. and Pehkonen, S.O., 1998. Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl−): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103, 28093-28102.
Lin, C.J. and Pehkonen, S.O., 1999. The chemistry of atmospheric mercury: a review, Atmos. Environ., 33, 2067‐2079.
Lindqvist, H.O. and Rodhe, H., 1985. Atmospheric merucry-a review, Tellus., 27B, 136-159.
Liu, S., Nadim, F., Perkins, C., Carley, R.J., Hoag, G.E., Lin, Y. and Chen, C.L., 2002. Atmospheric mercury monitoring survey in Beijing, China. Chemos., 48, 97–107.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J. and Morgan, J.T., 2007. Temporal variability of mercury speciation in urban air, Atmos. Environ., 41(9), 1911-1923.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J. and Morgan, J.T., 2010. Urban–rural differences in atmospheric mercury speciation, Atmos. Environ., 44(16), 2013-2023.
Lyman, S.N. and Gustin, M.S., 2009. Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A., Sci. Total Environ., 408(2), 431-438.
Malcolm, E.G. and Keeler, G.J., 2002. Measurements of mercury in dew: atmospheric removal of mercury species to a wetted surface, Environ. Sci. Technol., 36, 2815-2821.
Manolopoulos, H., Schauer, J.J., Purcell, M.D., Rudolph, T.M., Olson, M.L., Rodger, B. and Krabbenhoft, D.P., 2007. Local and regional factors affecting atmospheric mercury speciation at a remote location, J. Environ. Engineer. Sci., 6(5), 491-501.
Mao, H. and Talbot, R., 2011. Speciated mercury at marine, coastal, and inland sites in New England – part 1: temporal variability, Atmos. Chem. Phys. Discuss., 11, 32301–32336.
Mason, R.P., Fitzgerald, W.F. and Morel, M.M., 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences, Geochim. Cosmochim. Acta., 58, 3191-3198.
Mason, R.P., Lawson, N.M. and Sheu, G.R., 2000. Annual and seasonal trends in mercury deposition in Maryland, Atmos. Environ., 34, 1691-1701.
Mason, R. P. and Sheu, G.R., 2002. Role of the ocean in the global mercury cycle, Global Biogeochem. Cy., 16(4), 1093-1107.
Moore, C.W., Obrist, D. and Luria, M., 2013. Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects, Atmos. Environ., 69, 231-239.
Munthe, J., 1992. The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26, 1461-1468.
Nakagawa, R. and Hiromoto, M., 1997. Geographical distribution and background levels of total merucry in air in Japan and eighbouring countries, Chemos., 314, 801-806.
Nater, E.A. and Grigal, D.F., 1992. Regional trends in mercury distribution across the Great Lakes states, north central USA, Nature, 358, 139-141.
Nelson, P.F., 2007. Atmospheric emissions of mercury from Australian point sources. Atmos. Environ., 41, 1717-1724.
Ngim, C.H., Foo, S.C., Boey, K.W. and Jeyaratnam, J., 1992. Chronic neurobehavioural effects of elemental mercury in dentists, Br. J. Ind. Med., 49(11), 782-90.
Nguyen, H., Kim, K.H., Kim, M.Y., Hong S., Youn, Y.H., Shon, Z.H. and Lee, J., 2007. Monitoring of atmospheric mercury at a global atmospheric watch (GAW) site on An-Myun Island, Korea, Water Air Soil Poll., 185, 149-164.
Nguyen, H.T., Kim, M.Y. and Kim, K.H., 2010. The Influence of long-range transport on atmospheric mercury on Jeju Island, Korea, Sci. Total Environ., 408(6), 1295-1307.
Pacyna, E.G., Pacyna, J.M., Steenhuisen, F. and Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000, Atmos. Environ., 40, 4048-4063.
Patrick, L., 2002. Mercury toxicity and antioxidants: part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity, Altern. Med. Rev., 7(6), 456-471.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L. and Benson, S.A., 2003. Status review of mercury control options for coal-fired power plants, Fuel Proc. Technol., 82, 89-165.
Piikivi, L. and Hanninen, H., 1989. Subjective symptoms and psychological performance of chlorine-alkali workers, Scand. J. Work. Environ. Health., 15(1), 69-74.
Piikivi, L. and Tolonen, U., 1989. EEG findings in chlor-alkali workers subjected to low long term exposure to mercury vapour, Br. J. Ind. Med., 46(6), 370-375.
Pirrone, N., Costa, P., Pacyna, J.M. and Ferrara, R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region, Atmos. Environ., 35, 2997-3006.
Pirrone, N., Cinnirella, S., Feng, X.B., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G. and Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys. Discuss., 10, 5951–5964.
Poissant, L. and Hoenninger, G., 2004. Atmospheric mercury & ozone depletion events observed at the Hudson Bay in Northern Quebec along to BrO (DOAS) measurements, RMZ-Materials and Geoenviron., 51(1), 1722-1725.
Poissant, L., Pilote, M., Beauvais, C., Constant, P. and Zhang, H.H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM, and Hgp) in Southern Quebec, Canada, Atmos. Environ., 39, 1275-1287.
Ross, K.L., 2010. The solar terms and the chinese 60 year calendar cycle (http://www.friesian.com/chinacal.htm).
Rutter, A.P. and Schauer, J.J., 2007. The effect of temperature on the gas–particle partitioning of reactive mercury in atmospheric aerosols, Atmos. Environ., 41(38), 8647-8657.
Rutter, A.P., Snyder, D.C., Stone, E.A., Schauer, J.J., Gonzalez-Abraham, R., Molina, L.T., Márquez, C., Cárdenas, B. and Foy, B.D., 2009. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 9, 207-220.
Sakata, M. and Marumoto, K., 2002. Formation of atmospheric particulate mercury in the Tokyo metropolitan area, Atmos. Environ., 36, 239–246.
Schroeder, W.H., Yarwood, G. and Niki, H., 1991. Transformation processes involving mercury species in the atmosphere - results from a literature survey, Water Air Soil Poll., 56, 653-666.
Schroeder, W.H. and Munthe, J., 1998. Atmospheric mercury-an overview, Atmos. Environ., 32, 809-822.
Scudder B.C., Chasar, L.C., Wentz, D.A., Bauch, N.J., Brigham, M.E., Woran, P.W. and Krabbenhoft, P.K., 2009. Mercury in fish, bed sediment, and water from streams across the United States, 1998-2005, U.S. Geological Survey Scientific Investigations Report 2009–5109, 74.
Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaeglé , L. and Jaffe, D., 2007. Chemical cycling and deposition of atmospheric mercury: global constraints from observations, J. Geophys. Rec., 112(D2), 1-14.
Sheu, G.R. and Mason, R.P., 2001. An examination of methods for the measurements of reactive gaseous mercury in the atmosphere, Environ. Sci. Technol., 35(6), 1209–1216.
Sheu, G.R. and Mason, R.P., 2004. An examination of the oxidation of elemental mercury in the presence of halide surfaces, J. Atmos. Chem., 48, 107-130.
Sheu, G.R., Lin, N.H., Wang, J.L. and Lee, C.T., 2009. Monitoring of atmospheric mercury concentration at surface sites in Taiwan, Atmos. Chem., 30, 1-10.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou, C.F., Yang, C.F.O. and Wang, S.H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmos. Environ., 44, 2393-2400.
Sheu, G.R., Lin, N.H., Lee, C.T., Wang, J.L., Chuang, M.T., Wang, S.H., Chi, K.H. and Yang, C.F.O., 2012. Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment, Atmos. Environ., http://dx.doi.org/10.1016/j.atmosenv.2012.07.002.
Shon, Z.H., Kim, K.H., Song, S.K., Kim, M.Y. and Lee, J.S., 2008. Environmental fate of gaseous elemental mercury at an urban monitoring site based on long-term measurements in Korea (1997–2005), Atmos. Environ., 42, 142-155.
Sigler, J.M., Lee, X. and Munger, W., 2003. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire, Environ. Sci. Technol., 37, 4343-4347.
Slemr, F., Schuster, G. and Seiler, W., 1985. Distribution, speciation and budget of atmospheric mercury, J. Atmos. Chem., 3, 407-434.
Sommara, J., Gårdfeldta, K., Strömbergb, D. and Feng, X.B., 2001. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury, Atmos. Environ., 35, 3049-3054.
Sommar, J., Andersson, M.E. and Jacobi, H.W., 2010. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean, Atmos. Chem. Phys. Disscuss., 10, 5031-5045.
Sprovieri, E., Pirrone, N., Ebinghaus, R., Kock, H. and Dommergue., 2010. A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245-8265.
Stamenkovic, J. Lyman, S. and Gustin, M.S., 2007. Seasonal and diel variation of atmospheric mercury concentrations in the Reno (Nevada, USA) Airshed, Atmos. Environ., 41, 6662-6672.
Steffen, A., Schroeder, W.H., Edwards, G. and Banic, C., 2003. Mercury throughout polar sunrise 2002, J. Phys. IV France, 107, 1267–1270.
Temme, C. and Einax, J.W., 2002. Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the south Atlantic Ocean during polar summer, Environ. Sci. Technol., 37(1), 22–31.
Tsai, H.H. Yuan, C.S., Hung, C.H. and Lin, Y.C., 2010. Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone, Aerosol Air Qual. Res., 10(4), 331-344.
UNEP, 2002. Global Mercury Assessment, December. (http://www.chem.unep.ch/mercury/report/gma-report-toc.htm).
UNEP, 2012. Part A: global emissions of mercury to the atmosphere, UNEP/AMAP 2012 Technical Report, July.
Wang, W., Liu, J., Yang, S. and Peng, A., 2002. Distribution of mercury on the aerosol in the atmospheric of Beijing, Journal of Shanghai Jiaotong University, 36, 134-137 (in Chinese).
Wang, Z.W., Zhang, X.S., Chen, Z.S. and Zhang, Y., 2006. Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China, Atmos. Environ., 40, 2194–2201.
Wang, Z.W., Chen, Z.S., Duan, N. and Zhang, X.S., 2007. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China, J. Environ. Sci., 19(2), 176-180.
Wängberg, I., Munthe, J., Pirrone, P., Iverfeldt, å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F. and Tuncel, G., 2001. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region, Atmos. Environ., 35, 3019-3025.
Wu, Y., Wang, S., Streets, D.G., Hao, J., Chan, M. and Jiang, J., 2006. Trends in anthropogenic mercury emissions in China from 1995 to 2003, Environ. Sci. Technol., 40, 5312–5318.
Xiu, G., Cai, J., Zhang, W., Zhang, D., Büeler, A., Lee, S., Shen, Yan., Xu, L., Huang, X. and Zang, P., 2009. Speciated mercury in size-fractionated particles in Shanghai ambient air, Atmos. Environ., 43(19), 3145-3154.
Yang, H.D., Rose, N.L. and Battarbee, R.W., 2002. Mercury and lead budgets for lochnagar, a scottish mountain lake and its catchment, Environ. Sci. Technol., 36(7), 1383–1388.
Yang, Y., Chen, H. and Wang, D., 2009. Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China, Environ. Monit. Assess., 156, 479-789.
Yu, L.P. and Yan, X.P., 2003. Factors affecting the stability of inorganic and methylmercury during sample storage, Trends in Analytic. Chem., 22, 245–253.
Yuan, C.S., Lin, H.Y., Wu, C.H. and Liu M.H., 2004. Preparing of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process, J. Air Waste Manage. Assoc., 54, 862-870.
Yuan, C.S., Sau, C.C, Chen, M.C., Hung, M.H., Chang, S.W, Lin, Y.C. and Lee, C.G., 2004. Mass concentration and size-resolved chemical composition of atmospheric aerosols sampled at Penghu Islands during Asian dust storm periods in the years of 2001 and 2002, Terr. Atmos. and Oceanic Sci. J. (TAO), 15(5), 857-879.
Zhang, H. and Lindberg, S.E., 1999. Processes influencing the emission of mercury from soils: a conceptual model, J. Geophys. Res., 104, 21889-21896.
Zhang, Y., Xiu, G., Wu, X., Moore, C.M., Wang, J., Cai, J., Zhang, D., Shi, C. and Zhang, R., 2013. Characterization of mercury concentrations in snow and potential sources, Shanghai, China, Sci. Total Environ., 449, 434-442.
Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I. and Munthe, J., 2005. Seasonal mercury concentrations measured in rural air in Southern Poland: contribution from local and regional coal combustion, Atmos. Environ., 39(39), 7580-7586.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code