Responsive image
博碩士論文 etd-0726113-152721 詳細資訊
Title page for etd-0726113-152721
論文名稱
Title
複合加硫改質活性碳吸附單質及雙質氣相元素汞及氯化汞之吸附效能及吸附機制探討
Adsorptive Capacities and Adsorption Mechanisms of Single and Dual Adsorption of Gaseous Hg0 and/or HgCl2 by Composite Sulfur-impregnated Activated Carbons
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-01
繳交日期
Date of Submission
2013-08-26
關鍵字
Keywords
吸附機制、單質及雙質吸附、氯化汞及元素汞、粉狀活性碳(PAC)、熱重分析法(TGA)、飽和吸附容量、複合加硫改質
mercury chloride (HgCl2) and elemental mercury (Hg0), powdered activated carbons (PACs), thermogravimetric analysis (TGA), single and dual adsorption, adsorption mechanism, saturated adsorptive capacity, composite sulfur impregnation
統計
Statistics
本論文已被瀏覽 5827 次,被下載 204
The thesis/dissertation has been browsed 5827 times, has been downloaded 204 times.
中文摘要
本研究首次結合氣相元素硫及液相硫化鈉兩種硫含浸技術,進行活性碳複合加硫改質,並探討改質前後活性碳之比表面積及孔隙分佈變化,且將上述加硫改質活性碳應用TGA分析技術,探討氣相氯化汞或元素汞之單質吸附容量及吸附機制。此外,也進行複合加硫改質活性碳吸附雙質氣相氯化汞及元素汞之吸附容量及吸附機制分析,並探討不同燃燒廢氣來源(含都市垃圾焚化爐及燃煤電廠),在不同氯化汞濃度與元素汞濃度混合比例下,複合加硫改質活性碳同時對氯化汞及元素汞吸附容量及吸附機制之影響。
由活性碳加硫改質結果發現,加硫改質會提高活性碳的含硫量,但卻會降低活性碳的比表面積,且含硫量越大其比表面積降低幅度也越大。高比表面積活性碳在複合加硫改質後以大、微孔隙為主;而中、低比表面積活性碳則以大孔隙為主。由於中、大孔隙為吸附質進入微孔的主要通道,因此在吸附過程中,中、大孔隙的多寡亦會影響活性碳吸附效能。由複合加硫改質前後之活性碳化學特性分析(EDS)結果發現,複合加硫改質確實會大幅提高粉狀活性碳的含硫量,而複合加硫改質活性碳之含硫量,約為兩種單質加硫改質(硫化鈉及元素硫)活性碳含硫量之總合。
由複合加硫改質活性碳吸附單質氣相氯化汞結果得知,在相同比表面積條件下,複合加硫改質活性碳之氯化汞吸附容量隨著吸附溫度升高而增加。此結果顯示複合加硫改質活性碳吸附氯化汞,屬於化學吸附且有利於高溫吸附。此外,本研究亦發現當吸附溫度為200、300℃時,複合加硫改質活性碳之元素汞飽和吸附量比氯化汞飽和吸附量來得大。以燃煤電廠為例,氯化汞與元素汞之莫耳濃度比約為5:5,氯化汞及元素汞之單質吸附量,明顯大於雙質吸附量,其可能原因為兩種吸附質莫耳比為5:5時,吸附貫穿時間有提前之趨勢,而飽和吸附量則明顯減少,顯示氯化汞及元素汞互相競爭活化位址。以都市垃圾焚化爐為例,氯化汞與元素汞之莫耳濃度比約為6:4,都市垃圾焚化爐在吸附溫度為150、200、300℃時的汞吸附量,普遍高於燃煤電廠的汞吸附量,上述結果顯示,氯化汞扮演強吸附質,而元素汞則被視為弱吸附質,當兩者莫耳比從5:5轉變為6:4時,氯化汞濃度高於元素汞濃度,使得原來元素汞吸附位址被氯化汞佔據所致。
由熱力學分析結果得知,單質及雙質吸附氯化汞及元素汞之吸附自由能(∆G)在吸附溫度150~ 300℃時皆為負值,顯示複合加硫改質活性碳吸附氯化汞及元素汞趨向於自發性反應。而焓值(∆H)在吸附溫度150~300℃時亦皆為負值,表示複合加硫改質活性碳吸附氯化汞及元素汞屬於放熱反應。由Langmuir等溫吸附模式結果得知,隨著吸附溫度越高,qm 也越大,qm值介於33.789~98.118,故符合Langmuir 單層吸附理論;而平衡吸附常數KL值介於0.008~0.070,用於表達吸附位置之親和力或自由能量。另由Freundlich等溫吸附模式結果得知,n值均>1,顯示其為有利吸附(favorable adsorption);此外,本實驗所使用之複合加硫改質活性碳吸附單質氯化汞或元素汞之n值範圍介於1.949~10.288,屬於良好吸附劑之範圍。
Abstract
This study investigated the single and dual adsorption of mercury chloride (HgCl2) and elemental mercury (Hg0) using an innovative composite sulfur-impregnated activated carbon prepared by combining two sulfur impregnation methods with aqueous-phase sodium sulfide (Na2S) and vapor-phase elemental sulfur (S0). This study aims to prepare an innovative composite sulfur-impregnated PACs under different impregnation conditions, such as various sulfur species and impregnation temperatures, and to investigate the changes of its pore size distribution and specific surface area (SSA) before and after sulfur impregnation. Thermogravimetric analysis (TGA) technology was further applied to determine the saturated adsorptive capacities and adsorption mechanisms of single and dual Hg0 and/or HgCl2 adsorption.
Sulfur impregnation results indicated that, the more sulfur was impregnated, the lower SSA and pore volume of sulfur-impregnated PACs were obtained. These results showed that part of the micropores, mesopores, and even marcopores were probably plugged by sulfur species. Energy Dispersive Spectrometer (EDS) results showed that the composite sulfur impregnation process could greatly enhance the sulfur content of PACs. The sulfur content of the composite sulfur-impregnated PACs (Na2S and S0) was almost the sum of the sulfur content of two separate single sulfur-impregnated PACs (Na2S or S0). Furthermore, the higher the sulfur content of sulfurized PACs, the lower the specific surface area. However, since the mesopores and marcopores were the main channels for adsorbates entering the micropores, the amount of mesopores and marcopores could influence the saturated adsorptive capacity of PACs.
The adsorption of gas-phase HgCl2 showed that the influent concentration of HgCl2 could enhance its adsorptive capacity as the adsorption temperature increased. It suggested that the composite sulfur-impregnated PACs tended to be chemisorption and was a favorable adsorpation at elevated temperatures. In addition, when the adsorption occurs at 200-300℃, the saturated adsorptive capacity of Hg0 for the composite sulfur-impregnated PACs always exceled that of HgCl2. Using coal-fired power plant as an example, the saturated adsorptive capacity of HgCl2 or Hg0 was higher than that of dual Hg0 and HgCl2 adsorption when the molar ratio of influent HgCl2 and Hg0 was 5:5. The breakthrough time became shorter and the saturated adsorptive capacity decreased significantly, suggesting a competition between HgCl2 and Hg0 on the activated sites. Using municipal solid waste incinerator as an example, when the molar ratio of influent HgCl2 and Hg0 was 6:4, the adsorptive capacity of Hg species for coal-fired power plants was prominently lower than that of municipal solid waste incinerators at the adsorption temperatures of 150~300℃. It suggested that HgCl2 was a more competitive adsorbate than Hg0 which was tentatively replaced by HgCl2 on the adsorption sites.
Results from thermodynamic analysis showed negative ∆G for both single and dual adsorption of HgCl2 and/or Hg0 at the adsorption temperatures of 150~300℃. Experimental results confirmed the feasibility of adsorption process and the spontaneous nature for the adsorption of HgCl2 and Hg0. The negative ∆H for the adsorption HgCl2 and/or Hg0 at the adsorption temperatures of 150~300℃ suggested that the adsorption of HgCl2 and/or Hg0 was an exothermic process. The Langmuir isotherm results showed that the higher the adsorption temperatures, the greater the qm, with the qm of 33.789-98.118, and thus concurred with the theory of Langmuir isotherms. Moreover, the equilibrium adsorption constant KL ranged from 0.008 to 0.070 which highly related to the adsorption affinity or free energy. The Freundlich isotherm results showed that the value of n>1, suggesting the adsorption of HgCl2 and/or Hg0 was favorable adsorption. The n values of 1.949-10.288 for the single adsorption of vapor-phase HgCl2 or Hg0 by the composite sulfurized activated carbon suggested that the sulfurized activated carbons were thought as good adsorbents.
目次 Table of Contents
審定書…………………………………………………...…..…….………… Ⅰ
誌謝…………………………………………………...…..…….…………… Ⅱ
中文摘要…………………………………………………...…..…….……… III
英文摘要…………………………………………………………………….. Ⅴ
目錄………………………………………………………….…...……….…. Ⅶ
表目錄……………………………………………………….……...…….…. Ⅹ
圖目錄…………………………………………………….……...………….. XII
符號說明…………………………………………………………………….. XVI
第一章 前言………………………………………………..……..………… 1-1
1-1研究緣起……………….………………….………..….…………... 1-1
1-2研究目的………………………………….………….…...………... 1-5
1-3研究流程…………………………………….……………………… 1-5
第二章 文獻回顧………………………………………..………..………… 2-1
2-1汞污染物之物化特性及毒害影響........………………..………….. 2-1
2-1-1汞污染物之物化特性...……………..……..…………………… 2-2
2-1-2汞污染物之毒害性影響....................………………….……….. 2-5
2-2 汞污染物之背景、來源及控制技術……...…………..…..………… 2-7
2-2-1汞污染物之來源……………...………….....………….….......... 2-8
2-2-2汞污染物之傳輸途徑……...……………......…......…………… 2-9
2-2-3汞污染物之控制技術……...……………......…......…………… 2-12
2-3活性碳之來源、種類及物化特性......………………........…..……… 2-13
2-3-2活性碳之製備來源......………………………...………….......... 2-13
2-3-2活性碳之種類..............………………………...………….......... 2-14
2-3-3活性碳之物化特性.……..………..…….…......………………... 2-16
2-4活性碳吸附重金屬之機制……...…..…………...……......………… 2-20
2-4-1活性碳吸附機制….......…………...………..………………....... 2-20
2-4-2等溫吸附曲線........................................................................2-23
2-4-3吸附滯後現象.............................................................................2-23
2-4-4加硫改質活性碳吸附含汞污染物之應用………..……..................... 2-24
2-4-5活性碳加硫改質技術……...…..………………........................... 2-27
2-5熱重分析儀技術應用………..…..……………..................................2-30
2-6等溫吸附模式(Adsorption Isotherm).……………........................2-31
第三章 研究方法………………………………………..………………….......3-1
3-1實驗規劃設計與流程............................………....…..…………........3-1
3-2實驗材料與分析設備……………............……….……………......... 3-4
3-2-1 粉狀活性碳製備系統………………..............…............…....... 3-4
3-2-2 複合加硫改質系統..........................…..…….…............…........3-6
3-2-2-1 液相硫化鈉加硫改質系統...…….…............….................. 3-6
3-2-2-2 氣相元素硫加硫改質系統...…….…............….................. 3-6
3-2-3 儀器分析設備..........................…..…….…............…..............3-6
3-3實驗分析方法……………............……….……………..................... 3-7
3-3-1活性碳物化特性分析………………................…............…....... 3-7
3-3-2汞氣體產生器與熱重分析儀.............…............…......................3-9
3-3-3複合加硫改質活性碳吸附單質及雙質汞實驗…............…....... 3-10
3-3-4複合加硫改質活性碳熱力學分析實驗............…............…....... 3-12
第四章 結果與討論………………………………………..……………….. 4-1
4-1複合加硫改質活性碳之物化成份特性分析...……........................... 4-1
4-1-1複合加硫改質活性碳之表面外觀……....................................... 4-1
4-1-2複合加硫改質活性碳之比表面積及孔隙分佈型態................... 4-4
4-1-3複合加硫改質活性碳化學成份分析…...……............................ 4-10
4-2不同比表面積複合加硫改質活性碳吸附單質氯化汞或元素汞之效能……4-14
4-3複合加硫改質活性碳之單質氯化汞或元素汞吸附效能.................. 4-20
4-3-1不同氯化汞進流濃度之複合加硫改質活性碳吸附效能.......... 4-20
4-3-2 不同元素汞進流濃度之複合加硫改質活性碳吸附效能......... 4-23
4-4不同複合加硫改質程序之單質氯化汞與元素汞吸附效能……….. 4-28
4-4-1不同複合加硫改質程序之單質氯化汞吸附效能....................... 4-28
4-4-2不同複合加硫改質程序之單質元素汞吸附效能....................... 4-29
4-5複合與單一加硫改質活性碳之單質氯化汞或元素汞吸附效能...... 4-30
4-5-1複合與單一加硫改質之單質氯化汞吸附效能........................... 4-31
4-5-2複合與單一加硫改質之單質元素汞吸附效 能......................... 4-31
4-5-3不同加硫改質程序於每單位硫含量對汞之吸附影響………... 4-33
4-6複合加硫改質活性碳之吸附雙質氯化汞與元素汞...……............... 4-34
4-6-1氯化汞與元素汞之進流濃度-以燃煤火力發電廠進流汞莫耳濃度比為例..…4-34
4-6-2氯化汞與元素汞之進流濃度-以都市垃圾焚化爐進流汞莫耳濃度比為例..…4-38
4-6-3氯化汞與元素汞之不同莫耳比趨勢比較……………………... 4-40
4-7複合及單一加硫改質活性碳之吸附速率………………………….. 4-42
4-7-1吸附單質氯化汞之吸附速率……………………………........... 4-43
4-7-2吸附單質元素汞之吸附速率……………………………........... 4-44
4-8複合加硫改質活性碳之脫附實驗………………………………….. 4-45
4-9複合加硫改質活性碳之吸附機制探討......…....................................4-45
4-9-1複合加硫改質活性碳之熱力學分析…................……………... 4-46
4-9-2複合加硫改質活性碳之等溫吸附模式………………………... 4-49
4-9-2-1Langmuir 等溫吸附模式………………………………….. ........4-49
4-9-2-2Freundlich 等溫吸附模式…………………………............ 4-50
4-10原始活性碳吸附單質氯化汞或元素汞…………………………… 4-58
第五章 結論與建議………………….…………….………..……………… 5-1
5-1結論………………………………………………………………….. 5-1
5-2建議………………………………………………………………….. 5-4
參考文獻………………………..............................................................R-1
附錄………………………………………………………………………….. A-1

表 目 錄
表2-1 汞及其化合物之基本物理性質…........………………..………….. 2-4
表2-2 各國自然及人為污染排放源之汞排放量推估百分率…………….. 2-10
表2-3 U.S.EPA燃煤電廠汞管制標準……………………………………… 2-10
表2-4 活性碳於大孔、中孔及微孔之分佈範圍....………………..……… 2-17
表2-5 物理性吸附及化學性吸附之差異性比較………………………….. 2-22
表2-6 燃煤電廠與都市垃圾焚化廠之煙道氣之組成…....……………….. 2-27
表2-7 常見之等溫吸附模式……………………………………………….. 2-34
表3-1 廢輪胎熱裂解及活化之活性碳操作參數……………..………….. 3-5
表4-1 複合加硫改質活性碳之物理特性........………………..………….. 4-5
表4-2 複合加硫改質活性碳不同改質程序之物理特性……..………….. 4-8
表4-3 複合加硫改質活性碳鍛燒前後之物理特性…..………..………….. 4-9
表4-4 不同氯化汞進流濃度下複合加硫改質活性碳之氯化汞吸附量受 含硫量及比表面積之影響........4-16
表4-5 不同元素汞進流濃度下複合加硫改質活性碳之元素汞吸附量受 含硫量及比表面積之影響........4-16
表4-6 複合加硫改質活性碳之氯化汞吸附容量及含硫量隨吸附溫度及 氯化汞進流濃度之變化情形......4-21
表4-7 複合加硫改質活性碳之元素汞吸附容量及含硫量隨吸附溫度及元素汞進流濃度之變化情形.......4-24
表4-8 汞物種之平衡反應……………………………………....…………..4-36
表4-9 活性碳之雙質氣體吸附容量、進流濃度比例及含硫量隨吸附溫度之變化情形(以燃煤火力發電廠為例)…..4-37
表4-10 活性碳之雙質氣體吸附容量、進流濃度比例及含硫量隨吸附溫度之變化情形(以都市垃圾焚化爐為例)..……4-39
表4-11 活性碳之吸附雙質氣體容量隨不同進流濃度莫耳比變化情形…4-41
表4-12 複合加硫改質活性碳吸附氯化汞及元素汞之熱力學參數值…..4-48
表4-13 複合加硫改質活性碳吸附單質氯化汞之Langmuir 等溫吸附模式參數值……4-50
表4-14 複合加硫改質活性碳吸附單質元素汞之Langmuir 等溫吸附模式參數值……4-51
表4-15 複合加硫改質活性碳吸附單質氯化汞之Freundlich 等溫吸附模式參數值….4-54
表4-16 複合加硫改質活性碳吸附單質元素汞之Freundlich 等溫吸附模式參數值….4-55

圖 目 錄
圖1-1 本研究執行流程圖………………………………………………….. 1-7
圖 2-1十六種金屬元素揮發性分類圖…........………………..…………… 2-2
圖 2-2環境中含汞化學物種間之主要轉換及循環途徑………………….. 2-3
圖 2-3在燃煤過程中隨著溫度與區段變化之汞物種與型態轉換……….. 2-11
圖 2-4 活性碳孔隙分佈圖…………………………………………………. 2-17
圖 2-5 含氧官能基結構示意圖……………………………………………. 2-18
圖 2-6 含氮官能基………………………………………………………… 2-19
圖 2-7 五種等溫吸附曲線示意圖………………………………………… 2-24
圖 2-8 IUPAC所分類之吸附滯後現象…………………………………...... 2-25
圖2-9 活性碳對吸附質之吸附-脫附示意圖………………………………. 2-32
圖2-10 Freundlich Isotherm…………………………………………………. 2-35
圖 3-1 本研究實驗設計流程圖……………………………………………. 3-3
圖 3-2 廢輪胎熱裂解及活化之活性碳裝置示意圖……………………… 3-5
圖 3-3 複合加硫改質活性碳吸附單質及雙質汞實驗裝置示意圖……… 3-11
圖 3-4 燃煤電廠APCDs配置及溫度示意圖…………………………...,,,,,, 3-11
圖 4-1 未改質活性碳之SEM圖…………………………………………... 4-2
圖 4-2 硫化鈉液相改質活性碳之SEM圖………………………………... 4-2
圖 4-3元素硫氣相改質活性碳之SEM圖………………………………… 4-3
圖 4-4 硫化鈉及元素硫複合加硫改質活性碳之SEM圖………………... 4-3
圖 4-5 高比表面積活性碳複合加硫改質前後之孔徑分佈圖…………… 4-6
圖 4-6 中比表面積活性碳複合加硫改質前後之孔徑分佈圖……………. 4-6
圖 4-7 低比表面積活性碳複合加硫改質前後之孔徑分佈圖……………. 4-7
圖 4-8 複合加硫改質活性碳不同改質程序之孔徑分佈圖………………. 4-8
圖 4-9 複合加硫改質活性碳鍛燒前後之孔徑分佈圖……………………. 4-9
圖 4-10 未改質活性碳之化學特性分析………………………………….. 4-11
圖 4-11 液相硫化鈉改質活性碳之化學特性分析……………………….. 4-11
圖 4-12 氣相元素硫改質活性碳之化學特性分析……………………… 4-12
圖 4-13 複合加硫改質活性碳之化學特性分析………………………….. 4-12
圖 4-14 單一及複合加硫改質活性碳之含硫量變化趨勢圖……………... 4-13
圖 4-15中比表面積複合加硫改質活性碳之化學特性分析……………… 4-13
圖 4-16低比表面積複合加硫改質活性碳之化學特性分析……………… 4-14
圖 4-17氯化汞進流濃度677 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-17
圖 4-18氯化汞進流濃度406 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-17
圖 4-19氯化汞進流濃度135 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-18
圖 4-20元素汞進流濃度500 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-18
圖 4-21元素汞進流濃度300 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-19
圖 4-22元素汞進流濃度100 μg/m3對不同比表面積複合加硫改質活性碳之吸附量變化圖………………4-19
圖 4-23 複合加硫改質活性碳對氯化汞進流濃度及吸附溫度150℃之吸附量變化圖………………………4-21
圖 4-24 複合加硫改質活性碳對氯化汞進流濃度及吸附溫度200℃之吸附量變化圖………………………4-22
圖 4-25 複合加硫改質活性碳對氯化汞進流濃度及吸附溫度300℃之吸附量變化圖………………………4-22
圖 4-26 複合加硫改質活性碳對元素汞進流濃度及吸附溫度150℃之吸附量變化圖………………………4-24
圖 4-27 複合加硫改質活性碳對元素汞進流濃度及吸附溫度200℃之吸附量變化圖………………………4-25
圖 4-28 複合加硫改質活性碳對元素汞進流濃度及吸附溫度300℃之吸附量變化圖………………………4-25
圖 4-29 複合加硫改質活性碳對氯化汞及元素汞進流濃度及吸附溫度150℃之吸附量變化圖…………...4-26
圖 4-30 複合加硫改質活性碳對氯化汞及元素汞進流濃度及吸附溫度200℃之吸附量變化圖……………4-26
圖 4-31 複合加硫改質活性碳對氯化汞及元素汞進流濃度及吸附溫度300℃之吸附量變化圖……………4-27
圖 4-32 不同複合加硫改質程序對氯化汞之吸附量變化圖.…………….. 4-29
圖 4-33 不同複合加硫改質程序對元素汞之吸附量變化圖…………….. 4-30
圖 4-34 複合與單一加硫改質活性碳對氯化汞之吸附量變化圖……….. 4-32
圖 4-35 複合與單一加硫改質活性碳對元素汞之吸附量變化圖………... 4-32
圖 4-36不同複合加硫改質程序對每單位硫吸附汞質量之影響(a)氯化汞及(b)元素汞………….......................................................................
4-34
圖 4-37 不同溫度煙道氣之汞物種分佈曲線圖………………………….. 4-36
圖 4-38 煤中氯含量與煙道氣中氧化態汞之關係曲線圖……………….. 4-37
圖 4-39 複合加硫改質活性碳對燃煤火力發電廠混合氣體進流濃度及吸附溫度之吸附量變化圖………………………………………..
4-38
圖 4-40 複合加硫改質活性碳對都市垃圾焚化爐混合氣體進流濃度及吸附溫度之吸附量變化圖………………………………………
4-39
圖 4-41 複合加硫改質活性碳對吸附雙質氯化汞及元素汞不同莫耳比之趨勢比較………………………………………………………..
4-42
圖 4-42複合及單一加硫改質活性碳吸附單質氯化汞之吸附速率趨勢比較…………………………………………………………………..
4-43
圖 4-43複合及單一加硫改質活性碳吸附單質元素汞之吸附速率趨勢比較…………………………………………………………………..
4-45
圖 4-44複合加硫改質活性碳於TGA升溫重量損失變化圖……………... 4-46
圖 4-45複合加硫改質活性碳於150℃吸附單質氯化汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-51
圖 4-46複合加硫改質活性碳於200℃吸附單質氯化汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-52
圖 4-47複合加硫改質活性碳於300℃吸附單質氯化汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-52
圖 4-48複合加硫改質活性碳於150℃吸附單質元素汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-53
圖 4-49複合加硫改質活性碳於200℃吸附單質元素汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-53
圖 4-50複合加硫改質活性碳於300℃吸附單質元素汞之Langmuir等溫吸附模式模擬圖…………………………………………………..
4-54
圖 4-51複合加硫改質活性碳於150℃吸附單質氯化汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-55
圖 4-52複合加硫改質活性碳於200℃吸附單質氯化汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-56
圖 4-53複合加硫改質活性碳於300℃吸附單質氯化汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-56
圖 4-54複合加硫改質活性碳於150℃吸附單質元素汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-57
圖 4-55複合加硫改質活性碳於200℃吸附單質元素汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-57
圖 4-56複合加硫改質活性碳於300℃吸附單質元素汞之Freundlich等溫吸附模式模擬圖………………………………………………..
4-58
圖 4-57原始活性碳於150℃吸附單質氯化汞之吸附效能……………….. 4-59
圖 4-58原始活性碳於150℃吸附單質元素汞之吸附效能……………….. 4-60
參考文獻 References
Altwicker, E. and Millgan, M.S., “Formation of dioxins: competing rates between chemical similar precursors and De Novo reaction,” Chemosphere, Vol. 27, pp. 301-307, 1993.
Allen, J.L., Gatz, J.L., and Eklund, P.C., “Application for activated carbons from used tires: butane working capacity,” Carbon, Vol. 37, pp. 1485-1489, 1999.
Benefield, L. D., Judkins, J.F., and Weand, B.L., “Removal of soluble organic materials from wastewater by carbon adsorption,” Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 365-402, 1982.
Biswas, P. and Wu, C.Y.,“Control of toxic metal emissions from combustors using sorbents: a review,” J. Air Waste Manage. Assoc., Vol. 48, pp. 113-127, 1998.
Brady, T.A., Rostam-Abadi, M., and Rood, M.J.,“Applications for activated carbons from waste tires: natural gas storage and air pollution control, ” Gas Sep. Purif., Vol. 10, pp. 97-102, 1996.
Brown, T.D., Smith, D.N., Hargis, R.A., and O’Dowd, W.J.,“Mercury measurement and its control: what we know, have learned, and need to further investigate,” J. Air Waste Manage. Assoc., Vol. 49, pp. 628-640, 1999.
Bruce, R.M., Donald, F.Y., Theodore, H.O., and Wade, W. H., “Fundamentals of Fluid Mechanics, ” John Wiley & Sons, Inc., 6th Edition, Hoboken, NJ, 2006.
Cannon, F.S., Dusenbury, J.S., Paulsen, J., Sigh, D.W., and Maurer, D.J.,“Advanced oxidant regeneration of granular activated carbon for controlling air-phase VOCs, ” Ozone Sci. Eng., Vol. 18(5), pp. 417-441, 1996.
Carey, T.R., Hargrove, O.W., Jr., Richardson, C.F. Chang, R., and Meserole, F.B.,“Factors affecting mercury control in utility flue gas using activated carbon,” J. Air Waste Manage. Assoc., Vol. 48, pp. 1166-1174, 1998.
Caturla, F., Molina-Sabio, M., and Rodriguez-Reinoso, F., “Preparation of activated carbon by chemical activation with ZnCl2,” Carbon, Vol. 29, pp. 999, 1991.
Chang, Y.M.,“On pyrolysis of waste tires: degradation rate and product yields,” Res. Conserv. Recy., 17, 125-139, 1996.
Chen, W.C. Yuan, C.S. Hung, C.H., and Lin, H.Y.,“Sorption phenomenon of mercury chloride from saturated powdered activated carbons by using thermogravimetric analysis,”J. Environ. Eng. Manage., Vol. 19(4), pp. 213-220, 2009.
Chingombe, P., Saha, B., and Wakeman, R.J., “Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water,” J. Colloid. Interface Sci., Vol. 297, pp. 434–442, 2006.
Dhaouadi, A., Monser, L., and Adhoum, N., “Removal of rotenone insecticide by adsorption onto chemically modified activated carbons,” J. Hazard. Mater., Vol. 181, pp. 692–699, 2010.
Dickson, L.C., Lenoir, D., and Hutzinger, O., “Quantitative comparison of De Novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions,” Environ. Sci. Technol., Vol. 26, pp. 1822-1828, 1992.
Dunham, G.E., Oslon, E.S., and Miller, S.J., “Impact of flue gas constituent on carbon sorbets”, Proceeding of the air quality II:mercury, trace element, and particulate matter conference, McLean, VA, Sept.19-21, 4-3, 2000.
Fan, M. and Brown, R.C., “Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash, ” Energy & Fuel, Vol. 15, pp. 1414-1417, 2001.
Felsvang, K.R., Gleiser, G.P., and Nielsen, K., “Air toxics control by spray dryer”, Presented at the SO2 Control Symposium, Boston, MA, August, pp. 24-27, 1993.
Flora, J.R.V., Vidic, R.D., Liu, W., and Thurnau, R.C., “Modeling powdered activated carbon injection for the uptake of elemental mercury vapors,” J. Air Waste Manage. Assoc., Vol. 48, pp. 1051-1059, 1998.
Frandesn, F., Dam-Johansen, K., and Rasmussen, P., “Trace elements from combustion and gasification of coal-an equilibrium approach,” Progress in Energy and Combustion Science, Vol. 20, pp. 115-138, 1994.
Galbreath, K.C. and Zygarlicke, C.J., “Mercury transformations in coal combustion flue gas,” Fuel Process. Technol., Vol. 65, pp. 289-310, 2000.
Ghorishi, S.B., Robert, M.K., Shannon, D.S., Brian, K.G., and Wojciech, S.J., “Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury,” Environ. Sci. Technol., Vol. 36, pp. 4454-4459, 2002.
Ghodbane, I. and Hamdaoui, O., “Removal of mercury (II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies,” J. Hazard. Mater., Vol. 160, pp. 301–309, 2008.
Gibb, W.H., Clarke, F. and Mehta, A.K., “The fate of coal mercury during combustion,” Fuel Process. Technol., Vol. 65-66, pp. 365-377, 2000.
Gomez-Serrano, A., Macias-Garcia, A., Espinosa-Mansilla, A., and Valenzulela- Calahorro, C., “Adsorption of mercury, cadmium and lead from aqueous-solution on heat-treated and sulphurized activated carbon,” Water Research, Vol. 32, pp. 1-4, 1998.
Graydon, J.W., Zhang, X., Kirk, D.W., and Jia, C.Q., “Sorption and stability of mercury on activated carbon for emission control,” J. Hazard. Mater., Vol. 168, pp. 978-982, 2009.
Hasselriis, F. and Licata, A., “Analysis of heavy metal emission data from municipal waste combustion,” J. Hazard. Mater., Vol. 47, pp. 77-102, 1996.
Hall, B., Lindqvist, O., and Ljungstrom, E., “Mercury chemistry in simulated flue gases related to incineration conditions,”Environ. Sci. Technol., Vol. 24, pp.108-111, 1992.
Hartenstein, H.U., and Horvay, M., “Overview of municipal waste incineration industry in west Europe (based on the German experience),” J. Hazard. Mater., Vol. 47 (1-3), pp. 19-30, 1996.
Hladíková, V., Petrík, J., Jursa, S., Ursínyová, M., and Kočan, A., “Atmospheric mercury levels in the Slovak Republic,” Chemosphere, Vol. 45, pp. 801-806, 2001.
Hsi, H.C., Rood, M.J., Rostam-Abadi, M., Chen, S., and Chang, R., “Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers,” Environ. Sci. Technol., Vol. 35, pp. 2785-2791, 2001.
Hunsicker, M.D., Crockett, T.R., and Labode, B.M.A., “An overview of the municipal waste incineration industry in Asia and the former Soviet Union,” J. Hazard. Mater., Vol. 47(1-3), pp. 31-42, 1996.
Ie, I.R., Chen, W.C., Yuan, C.S., Hung, C.H., Lin, Y.C., Tsai, H.H., and Jen, Y.S., “Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon,” J. Hazard. Mater., Vol. 217-218, pp. 43-50, 2012.
Ie, I.R., Hung, C.H., Jen, Y.S., Yuan, C.S., and Chen, W.H., “Adsorption of Vapor-Phase Elemental Mercury (Hg0) or Mercury Chloride (HgCl2) with Innovative Composite Activated Carbons Impregnated with Na2S and S0 in Different Sequences,” Chem. Eng. J., Vol. 229, pp.469-476, 2013.
Innanen, S., “The ratio of anthropogenic to natural mercury release in Ontario: Three emission scenarios,” Sci. Total Environ., Vol. 213, pp. 25-32, 1998.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F., and Volpicelli, G., “Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon,” Combust. Sci. Technol., Vol. 112, pp. 163-174, 1996.
Kilgroe, J.D., “Control of dioxin, furan, and mercury emissions from municipal waste combustors,” J. Hazard. Mater., Vol. 47, pp. 163-194, 1996.
Kim, K., “Carbon-Electronchemical and Physicochemical Properties,” John Wiley & Sons, New York, 1987.
Kim, S., Park, J.K., and Chun, H.D., “Pyrolysis kinetics of scrap tire rubbers. I: using DTG and TGA,” J. Environ. Eng., Vol. 15, pp. 507-514, 1995.
Korpiel, J.A. and Vidic, R.D., “Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury”, Environ. Sci. Technol., Vol. 31, pp. 2319-2325, 1997.
Kotnik, J., Horvat M., Mandic, V., and Martina, L., “Influence of the Sostanj coal-fired thermal plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia,” Sci. Total Environ., Vol. 259, pp. 85-95, 2000.
Krishnan, S.V., Gullett, B.K., and Jozewicz, W., “Sorption of elemental mercury by activated carbons,” Environ. Sci. Technol., Vol. 28(8), pp. 1506-1512, 1994.
Lancia, A., Matsumara, D., Pepe, F., and Volpicelli, G., “Adsorption of mercuric chloride vapours from incinerator flue gases on calcium hydroxide particles,” Combust. Sci. Technol., Vol. 93, pp. 277-289, 1993.
Lahaye, J. “The chemistry of carbon surfaces,”Fuel, Vol. 77, pp. 543-547, 1998.
Lee, S.J., Seo, Y.C., Jang, H.N., Park, K.S., Baek, J.I., An, H.S., and Song, K.C., “Speciation and mass distribution of mercury in a bituminous coal-fired power plant,”Atmos. Environ., Vol. 40, pp. 2215-2224, 2006.
Levin, L., Allan, M.A., and Yager, J., “Assessment of source-receptor relationships for utility mercury emissions,”In Proceedings of the Air Quality Ⅱ : Mercury, trace elements, and particulate matter conference, McLean, Virginia, A5-3, 2000.
Li, Y.H., Lee, C.W., and Gullett, B.K., “Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption,” Fuel, Vol. 82, pp. 451-457, 2003.
Liu, W., Vidic, R.D., and Brown, T.D., “Optimization of sulfur impregnation protocal for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal,” Environ. Sci. Technol., Vol. 32, pp. 531-538, 1998.
Lin, Y.R. and Teng, H.“Mesoporous carbons from waste tires char and their application in wastewater discoloration,” Micropor. Mesopor. Mater., Vol. 54, pp. 167-174, 2002.
Lin, H.Y., Yuan, C.S., Wu, C.H., and Hung, C.H.,“The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires,”J. Air Waste Manage. Assoc., Vol. 56, pp. 1558-1566, 2006.
Lindbaure, R.L., Wurst, F., and Prey, T., “Combustion dioxin suppression in municipal solid waste incineration with sulfur additives,” Chemosphere, Vol. 25, pp. 1409-1426, 1992.
Lucas, S., Cocero, M.J., Zetzl, C., and Brunner, G., “Adsorption isotherms for ethylacetate and furfural on activated carbon from supercritical carbon dioxide,” Fluid Phase Equilibria., Vol. 219, pp. 171-179, 2004.
Meij, R., Vredendregt, L.H.J., and Winkel, H., “The fate and behavior of mercury in coal-fired power plants,”J. Air Waste Manage. Assoc., Vol. 52, pp. 912-917, 2002.
Merchant, A.A. and Petrich, M.A., “Pyrolysis of scrap tires and conversion of chars to activated carbon,” AIChE J., 39, 1370-1376, 1993.
Miguel, G.S., Fowler, G.D., and Sollars, C.J., “Pyrolysis of tire rubber: porosity and adsorption characteristics of the pyrolytic chars,” Ind. Eng. Chem.Res., 37, 2430-2435, 1998.
Miller, S.J., Dunham, G.E. Oslon, E.S., and Brown, T.D., “Flue gas effects on a carbon-based sorbent,” Flue Proc. Tech., Vol. 65, pp. 343-364, 2000.
Montes-Moran, M.A. Suarez, D. Menendez, J.A., and Fuente, E., “On the nature of basic sites on carbon surfaces: An overview, ” Carbon, Vol. 42, pp. 1219–1224, 2004.
Morimoto, T., Wu, S., and Uddin M.A., “Characteristics of the mercury vapor removal from coal combustion flue gas by activated carbon using H2S,” Fuel, Vol. 84, pp. 1968-1974, 2005.
Nazely, D., Gema, R., Ane, U., and Inmaculada, O., “Recovery of the main pear aroma compound by adsorption/desorption onto commercial granular actovated carbon: equilibrium and kinetics,” J. Food Engineering, Vol. 84, pp. 82-91, 2008.
Nishitani, T., Fukunaga, I., Itoh, H., and Nomura.T., “The relationship between HCl and mercury speciation in flue gas from municipal solid waste incinerations,” Chemosphere, Vol. 39, pp. 1-9, 1999.
Niksa, S. and Fujiwara, N. “Predicting complete Hg speciation along coal-fired utility exhaust systems,” in: EPRI-DOE-EPA A&WMA combined utility air pollution control symposium: the MEGA symposium, paper No. 45, Washington DC, USA, 2004.
Norton, G.A., Yang, H., Brown, R.C., Laudal, D.I., Dunham, G.E., and Erjavec, J., “Heterogeneous oxidation of mercury in simulated post combustion condition,” Fuel Proc. Tech., Vol. 82, pp. 107-116, 2003.
Ollero, P., Serrera, A., Arjona, R., and Alcantarilla, S., “Diffusional effects in TGA gasification experiments for kinetic determination,” Fuel, Vol. 81, pp. 1989-2000, 2002.
Paasivirta, J., “Chemical Ecotoxicology,” Lewis Publishers, Inc, Chelsea, MI, 1991.
Pacyna, E.G., Pacyna, J.M., and Pirrone, N., “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ., Vol. 35, pp. 2987-2996, 2001.
Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., and Wilson, S., “Global anthropogenic mercury emission inventory for 2000,” Atmos. Environ., Vol. 40, pp. 4048-4063, 2006.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Oslon, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A., “Status review of mercury control options for coal fired power plants,” Flue Proc. Tech., Vol. 82, pp. 89-165, 2003.
Park, K.S., Seo, Y.C., Lee, S.J., and Lee, J., “Emission and speciation of mercury from various combustion sources,” Powder Technol., Vol. 180, pp. 151-156, 2008.
Popescu, M., Jolu, J.P., Carre, J., and Danatoiu, C., “Dynamical adsorption and temperature-programmed desorption of VOCs on activated carbons,” Carbon, Vol. 41, pp. 739-748, 2003.
Pichon, C., Risoul, V., Trouve, G., Peters, W.A., Gilot, P., and Prado, G., “Study of evaporation of organic pollutants by thermogravimetric analysis:experiments and modeling,” Thermochimica Acta, Vol. 306, pp. 143-151, 1997.
Pudasainee, D. Lee, S.J. Lee, S.H. Kim, J.H. Jang, H.M. Cho, S.J., and Seo, Y.C., “Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants,” Fuel, Vol. 89, pp. 804-809, 2010.
Rodriguez-Reinoso, F., “The role of carbon materials in heterogeneous catalysis,” Carbon, Vol. 36, pp. 159-175, 1998.
Ruthven, D.M.,“Principles of Adsorption and Adsorption Processes,”John Wiley & Sons, Canada, 1984.
Sakata, M. and Marumoto, K., “Formation of atmospheric particulate mercury in the Tokyo metropolitan area,” Atmos. Environ., Vol. 36(2), pp. 239-246, 2002.
Sandra, V. and Roberto, P., “Deposition of sulfur from H2S on porous adsorbents and effect on their mercury adsorption capacity,” Geothermics, Vol. 28, pp. 341-354, 1999.
Schuster, E., “The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature,”Water, Air & Soil Pollu., Vol. 56, pp. 667-680, 1991.
Schroeder, W.H., Yarwood, G., and Niki, H., “Transformation processes involving mercury species in the atmosphere-results from a literature survey,” Water, Air & Soil Pollu., Vol. 56, pp. 653-666, 1991.
Senior, C.L., Bool, L.E., Huffman, G.P., Huggins, F.E., Shah, N., Sarofim, A., Olmez, I., and Zeng, T., “A fundamental study of mercury partitioning in coal-fired plant flue gas,” The 90th Annual Meeting and Exhibition of Air and Waste Management Association, Toronto, Canada, June, 1997.
Senior, C.L., Morency, G.P. Huffman, G.P. Huggins, F.E. Shah, N. Peterson, T. Shadman, F., and Wu, B., “Interaction between vapor-phase mercury and coal fly ash under simulated utility power plant flue gas condition,” The 91th Annual Meeting and Exhibition of Air and Waste Management Association, San Diego, CA, June, 1998.
Senior, C.L., Helbel, J.J., and Sarofim, A.F., “Emission of mercury, trace element, and fine particle from stationary combustion sources,” Fuel Process. Technol., Vol. 65, pp. 263-288, 2000.
Senior, C., Bustard, C.J., Durham, M., Baldrey, K., and Michaud, D., “Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants,” Fuel Process. Technol., Vol. 85, pp. 601-612, 2004.
Sinha, R.K. and Walker, P.L., “Removal of mercury by sulfurized carbon,” Carbon, Vol. 10, pp. 754-756, 1972.
Sjostrom, S., Ebner, T., and Slye, R., “MerCAP: a novel approach for vapor-phase mercury capture,” The 95th Annual Meeting and Exhibition of Air and Waste Management Association, Baltimore, MD, June, 2002.
Streets, D.G., Zhang, Q., and Wu, Y., “Projections of global mercury emissions in 2050,”Environ. Sci. Technol., Vol. 43(8), pp. 2983-2988, 2009.
Suzuki, M., “Adsorption Engineering,” Kodansha Ltd., Tokyo. 1990.
Uddin, M.A., “Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon,” Energy & Fuel, Vol. 3, pp. 454-460, 2008.
U.S. Environmental Protection Agency, “Mercury Study Report to Congress, Volume 1: Executive Summary,” Office of Air Quality Planning and Standards, Washington, DC, December, 1997.
U.S. Environmental Protection Agency, “Standards of performance for new and existing stationary sources: electric utility steam generating units: final notice of reconsideration, Final Rule,” 2006.
Vidic, R.D., Chang, M.T., and Thurnau, R.C., “Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbon,” J. Air Waste Manage. Assoc., Vol. 48, pp. 247-255, 1998.
Wängberga, I., Munthea, J., Pirroneb, N., Iverfeldta, A., Bahlmanc, E., Costab, P., Ebinghausc, R., Fengd, X., Ferrarae, R., Gardfeldtd, K., Kockc, H., Lanzillottae, E., Mamanef, Y., Masg, F., Melamedf, E., Osnatf, Y., Prestboh, E., Sommard, J., Schmolkec, S., Spaini, G., Sprovierib, F., and Tuncel, G., “Atmospheric mercury distribution in Northern Europe and in the Mediterranean region,” Atmos. Environ., Vol. 35(17), pp. 3019-3025, 2001.
Wang, S.X., Zhang, L., Li, G.H., Wu, Y., Hao, J.M., Pirrone, N., Sprovieri, F., and Ancora, M.P., “Mercury emission and speciation of coal-fired power plants in China,” Atmos. Chem. Phys., Vol. 10, pp. 1183-1192, 2010.
Wenguo, F., Eric, B., and Radisav, D.V., “Sulfurization of carbon surface for vapor phase mercury removal-I: Effect of temperature and sulfurization protocol,” Carbon, Vol. 44, pp. 2990-2997, 2006.
Wei, L., Vicdic, R.D., and Brown, T.D., “Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal,” Environ. Sci. Technol., Vol. 32, pp. 531-538, 1998.
Williams, P.T. and Besler, S. “Pyrolysis-thermogravemetric analysis of tyres components,” Fuel, Vol. 74(9), pp. 1277-1283, 1995.
Wu, S., Uddin, M.A., and Sasaoka, E., “Characteristics of the removal of mercury vapor in coal derived flue gas over iron oxide sorbents,” Fuel, Vol. 85, pp. 213-218, 2006.
Xiong, Youhui, Jiang, T., and Zou, X., “Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace, ” Thermochim. Acta, Vol.408, pp.97-101, 2003.
Yuan, C.S., Lin, H.Y., Wu, C.H., and Liu M.H.,“Preparing of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process,”J. Air Waste Manage. Assoc., Vol. 54, pp. 862-870, 2004.
Zabihi, M., Haghighi Asl, A., and Ahmadpour, A.,“Studies on adsorption of mercury from aqueous solution on activated carbonsprepared from walnut shell,”J. Hazard. Mater., Vol. 174, pp. 251-256, 2010.
吳俊欣,“都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試”,國立中山大學環境工程研究所碩士論文,2000。
袁中新、洪崇軒,“以廢輪胎熱裂解產物碳黑製備活性碳應用於都市垃圾焚化爐排放廢氣中汞蒸氣去除之研究”,國科會/環保署科技合作研究報告,2000。
劉明翰,“粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立”,國立中山大學環境工程研究所碩士論文,2001。
行政院環境保護署網頁,http:// ivy5.epa.gov.tw/epalaw/docfile/ 040080z951225. doc,2013。
陳威錦,“熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究”,國立中山大學環境工程研究所碩士論文,2004。
林勳佑,“資源再利用粉狀活碳吸附氣相氯化汞之研究”,國立中山大學環境工程研究所博士論文,2005。
黃美惠,“燃煤程序重金屬排放特性之初步研究”,國立中央大學環境工程研究所碩士論文,2005。
石立節,“奈米碳管酸純化前後表面特性之變化”,國立中央大學環境工程研究所碩士論文,2005。
蔣政昇,“低價含硫活性碳吸附劑去除低濃度氣相汞之可行性研究”,國立高雄第一科技大學環境與安全衛生工程系(所)碩士論文,2006。
林欣怡,“燃煤底灰未燃碳活化處理為活性碳之研究”,國立成功大學資源工程研究所碩士論文,2006。
蘇明德,“化學動力學觀念與1000題”,五南圖書出版股份有限公司,2008。
薛聖翰,“利用熱重分析法探討含硫活性碳之氯化汞吸附及脫附之研究”,國立中山大學環境工程研究所碩士論文,2008。
袁中新、陳威錦、薛聖翰、葉耀仁,“應用熱重分析技術探討加硫改質對活性碳吸附氣相氯化汞吸附效能與吸脫附動力模式之影響”,98國科會研究成果報告,NSC 96-2221-E-110 -017-MY2,2008。
王曉剛,“ 流體力學講義” ,義守大學機械與自動化工程系上課講義,2008。
林桂如,“硫含浸改質碳基與非碳基吸收劑去除燃煤煙道氣中汞蒸氣”,國立高雄第一科技大學環境與安全衛生工程系碩士論文,2009。
王琳麒、張簡國平、李文智、吳義林、席行正,“燃煤發電廠戴奧辛流布與重金屬排放調查分析”,99台灣電力股份有限公司研究計畫書,2010。
陳威錦,“應用熱重分析技術探討加硫改質活性碳吸附氣相氯化汞之吸附效能與吸(脫)附動力模式”,國立中山大學環境工程研究所博士論文,2010。
袁中新、陳威錦、葉耀仁,“應用熱重分析技術探討二階段複合加硫改質程序對活性碳同時吸附氣相氯化汞及元素汞吸附效能與吸附動力之影響究”,99年國科會研究報告,NSC 98-2221-E-110-016-MY3,2010。
袁中新、蔡協宏、葉耀仁,“應用熱重分析技術探討二階段複合加硫改質程序對活性碳同時吸附氣相氯化汞及元素汞吸附效能與吸附動力之影響究”,100年國科會研究報告,NSC 98-2221-E-110-016-MY3,2011。
袁中新、葉耀仁、陳威錦,“應用熱重分析技術探討二階段複合加硫改質程序對活性碳同時吸附氣相氯化汞及元素汞吸附效能與吸附動力之影響究”,101年國科會研究報告,NSC 98-2221-E-110-016-MY3,2012。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code