Responsive image
博碩士論文 etd-0726113-164741 詳細資訊
Title page for etd-0726113-164741
論文名稱
Title
鎳在多晶銅及黃銅基板上電鍍磊晶成長的研究
Study on epitaxial growth of Ni on polycrystalline Cu and brsss by electrodeposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-26
繳交日期
Date of Submission
2013-08-26
關鍵字
Keywords
鎳、結晶方位、背向散射電子繞射、磊晶成長、電鍍
epitaxial growth, EBSD, electrodeposition, orientation, Ni
統計
Statistics
本論文已被瀏覽 5756 次,被下載 1145
The thesis/dissertation has been browsed 5756 times, has been downloaded 1145 times.
中文摘要
本研究探討電流密度、結晶方位和晶格失配對氨基磺酸電鍍純鎳的初期成長模式影響。使用配備背向散射電子繞射儀的掃描式電子顯微鏡和穿透式電子顯微鏡分析鍍層的顯微組織與結晶方位。
掃描式電子顯微鏡的觀察顯示電解拋光後的基板表面的粗糙度與晶粒方位有關,銅與黃銅基板上 <001> //ND方位的晶粒表面平坦,<101> 與 <111> //ND方位的晶粒相對粗糙。背向散射電子繞射分析顯示,在本研究調變的參數(電流密度0.2-10 A/dm2,銅與黃銅基板)範圍內,任何方位的晶粒表面,純鎳在電鍍初期皆可以磊晶方式成長。在電流密度低於1 A/dm2以下時,只有在<001>//ND方位的晶粒上,磊晶鍍層可以成長至厚度1 m以上,當電流密度介於於1-10 A/dm2時,所有方位的晶粒上的磊晶鍍層均可成長至1 m以上。但是當磊晶鍍層成長至1 m左右時,非<001>//ND方位晶粒的鍍層中開始出現第二種方位的成核,且第二種方位與原始磊晶間存在<111>/180o的雙晶關係。相同電鍍條件下,在銅基板上的磊晶成長臨界厚度較黃銅基板大。在<001>//ND方位晶粒上的磊晶鍍層厚度最高可達280 μm,在<011>//ND方位晶粒上的磊晶鍍層厚度最高可達10 μm。<111>//ND方位晶粒上的磊晶鍍層厚度均在5 m以下。磊晶成長模式的破壞與鍍層粗糙度的增加有關,而鍍層粗糙度則與原始基板表面的粗糙度有關。在初期磊晶成長與中期的柱狀晶成長過程中,存在一個以雙晶成核為主的細晶過渡區,其厚度約數微米。
Abstract
This study investigates the effects of current density, grain orientation of polycrystalline substrate and lattice misfit on the growth behavior of Ni electrodeposited on Cu or brass substrate from a sulfamate solution. The substrate and Ni electrodeposited layer were analyzed by scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy.
Scanning electron microscopy showed that the roughness of the grain surface after electro-polishing is related to the grain orientation. The surface of the <001>//ND grains is smooth, but the <101> and <111>//ND ones are rather rough. EBSD analysis demonstrated that Ni electrodeposited initially on Cu and brass in an epitaxial manner, regardless the orientation of substrate grains and current density. At current densities of 1 A/dm2 or lower, only the epilayer deposited on the <100>//ND grains could be as thick as 1 μm, where those on grains of other orientations were thin. The thicknesses of the epilayers grown on grains of all orientations were higher than 1 μm as the current density was of 1-10 A/dm2. However, numerous small nucleus of an twin orientation relationship to the epilayer were observed on the epilayers grown on the non-<100>//ND grains. At the same electrodeposition condition and grain orientation, the critical thickness of the epilayer grown on the Cu is higher than that on brass, mainly due to a lower lattice misfit between Ni and Cu.。A transition layer of fine, equiaxed grains were observed to be positioned between the epilayer and the columnar grains. The grain boundaries in the transition layer are mainly twin boundaries.
目次 Table of Contents
總目錄

中文摘要………………………………………………………………………..I
英文摘要…………………………………………………………………II
總目錄………………………………………………………………………. IV
表目錄……………………………………………………………………….VII
圖目錄………………………………………………………………………VIII
第一章 緒論......................................................................................................1
第二章 基礎理論與文獻回顧..........................................................................2
2.1磊晶成長................................................................................................2
2.1.1 磊晶成長.........................................................................................2
2.1.2 成核與成長.....................................................................................2
2.1.3 層狀成長………………………………..........................................4
2.1.4島狀成長……………………………………………………...4
2.1.5 混合成長…………………………………………………………..5
2.2 電鍍原理........................................................................................5
2.2.1 電位..................................................................................................5
2.2.2 過電位..............................................................................................6
2.2.3 法拉第定律......................................................................................6
2.2.4 電鍍參數與裝置..............................................................................7
2.2.5 循環伏特安培法..............................................................................7
2.2.6 電解拋光..........................................................................................8
2.3 電鍍參數對鍍層集合組織的影響........................................................8
2.3.1 電流密度..........................................................................................8
2.3.2鍍液成分.........................................................................................10
2.3.3基板方位及顯微組織....................................................................10
2.3.4 添加物...........................................................................................11
2.4電鍍參數對磊晶成長的影響................................................................12
2.4.1鍍液成分與電流密度......................................................................12
2.4.2基板顯微組織.................................................................................13
2.4.3 添加物...........................................................................................16
2.5背向散射電子繞射原理及共位晶格晶界……..………..............17
2.5.1 背向散射電子繞射原理….................................................17
2.5.2共位晶格晶界...........................................................................18
2.6實驗目的....................................................................................18
第三章 實驗方法...........................................................................................20
3.1退火熱處理.........................................................................20
3.1.2基板材料與表面處理......................................................................21
3.2 電鍍製程.............................................................................................21
3.3 掃描式電子顯微鏡分析.....................................................................21
3.3.1 SEM 表面觀察…………...............................................................21
3.3.2背向散射電子繞射分析.................................................................22
3.4 原子力顯微鏡分析...........................................................................22
3.5 穿透式電子顯微鏡分析.....................................................................22
3.6 X 光繞射分析....................................................................................23
第四章 實驗結果...........................................................................................24
4.1 基板與鍍層表面形貌觀察.............................................................24
4.1.1 光學顯微鏡表面形貌觀察...........................................................24
4.1.2 SEM 表面形貌觀察......................................................................24
4.2 EBSD 分析.........................................................................................25
4.2.1 銅基板分析....................................................................................25
4.2.1.1 基板效應..................................................................................26
4.2.1.2 電流密鍍效應..........................................................................26
4.2.2 黃銅基板分析..............................................................................28
4.2.3 截面 EBSD 分析.........................................................................29
4.2.3.1 銅基板截面分析......................................................................29
4.2.3.2 黃銅基板截面分析..................................................................32
4.3 TEM 分析...........................................................................................34
4.4 AFM 分析...........................................................................................34
4.5 X 光繞射分析.....................................................................................35
第五章 討論……...........................................................................................37
5.1 電鍍鎳的磊晶成長............................................................................37
5.2 磊晶成長的厚度.................................................................................38
5.3 磊晶成長與雙晶關係........................................................................39
5.4 競爭成長的效應...............................................................40
5.5 表面形貌與方位關係...............................................................40
5.6 方位轉換.........................................................................................41
5.7 In-plane 及 cross section 合併結果比較...................................42
第六章 結論……...........................................................................................43
第七章 參考文獻...........................................................................................44
參考文獻 References
[1] J.W. Matthews, Epitaxial Growth, Academic Press, (1975).
[2] T. Mimani, S.M. Mayanna, N. Munichandraiah, J. Appl. Electrochem., 23, 339 (1993).
[3] D. Mockute, G. Bernotiene, Surf. Coat. Technol., 135, 42 (2000).
[4] G.I. Finch, A.L. Williams, Trans. Faraday Soc., 33, 564 (1937).
[5] G.I. Finch, C.H. Sun, Trans. Farady Soc., 32, 852 (1936).
[6] P. Fricoteaux, O. Savadogo, Electrochem. Acta, 44, 2927 (1999).
[7] I. Gundiler, L.E. Murr, Thin Solid Films, 37, 387 (1976).
[8] C.K. Chung, W.T. Chang, Thin Solid Films, 517, 4800 (2009).
[9] E.W. Bohannan, M.G. Shumsky, J.A. Switzer, Chem. Mater, 11, 2289 (1999).
[10] A. Seki, K. Kamei, ISIJ Int., 32,1306 (1992).
[11] 劉映辰,鎳在多晶銅基板的電鍍磊晶成長研究,國立中山大學材料與光電科學學系碩士班論文(2011)。
[12] L. Allemand, M. Froment, G. Maurin, E. Souteyrand, Microsc. Microanal., 3, 401 (1992).
[13] T. Pauporte, R. Cortes, M. Froment, B. Beaumont, D. Lincot, Chem. Mater. 14, 4702 (2002).
[14] R. Henriquez, H. Gomez, G. Riveros, J. F. Guillemoles, M. Froment, D. Lincot, Electrochem. Solid-State Lett. 7, 75 (2004).
[15] A. Koeck, R. Bruck, M. Wellenzohn, R. Hainberger, J. Vac. Sci. Technol. 28, C6B1 (2010).
[16] P. Mike, P. Jianbiao, S. Julie, H. Patrick, J. Electron. Mater. 41, 224 (2012).
[17] A. Goto, H. Yasuoka, a, H. Yamamoto, T. Shinjo, J. Magn. Magn. Mater. 124, 285 (1993).
[18] J.E. Ayers, Heteroepitaxy of Semiconductors, CRC press, (2006).
[19] D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, CRC Press, (2009).
[20] K.N. Tu, J.W. Mayer, L.C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan, (1992).
[21] W. Plieth, Electrochemistry for Materials Science, Baker and Taylor Books, (2008).
[22] D.R. Crow, Principles and Applications of Electrochemistry, Chapman and Hall, (1988).
[23] M. Paunovic, Fundamentals of Electrochemical Deposition, John Wiley and Sons, (2006).
[24] 葉介元,”電解拋光機之設計與測試”,逢甲大學紡織工程研究所碩士論文(1996)。
[25] 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌198期(1999)。
[26] S. Pathak, M. Guinard, M.G.C. Vernooij, B. Cousin, Z. Wang, J. Michler, L. Philippe, Surf. Coat. Technol., 205, 3651 (2011).
[27] J. Amblard, I. Epelboin, M. Froment, G. Maurin, J. Appl. Electrochem., 9, 233 (1979).
[28] Y. Nakamura, N. Kaneko, M. Watanabe, H. Nezu, J. Appl. Electrochem. , 24, 227 (1994).
[29] A.M. Rashidi, A. Amadeh, Surf. Coat. Technol., 202, 3772 (2008).
[30] L. Wang, Y. Gao, T. Xu, Q. Xue, Mater. Chem. Phys., 99, 96 (2006).
[31] M.F. Ahmed, B.S. Sheshadri, F. Pushpanaden, J. Mater. Sci., 12, 549 (1977).
[32] L. Wang, P. Fricoteaux, K.Y. Zhang, M. Troyon, P. Bonhomme, J. Douglade, A. Metrot, Thin Solid Films, 261, 160 (1995).
[33] T. Uemura , T.M. Chang, A. Shibata, M. Sone, Thin Solid Films, (2012).
[34] A. Shibata, H. Noda, M. Sone, Y. Higo, Thin Solid Films, 518, 5153 (2010).
[35] Y.M. Kulish, G.P. Umansky, S.Y. Veseliansky, Phys. Lett. A, 157, 163 (1991).
[36] S.G. Corcoran, G.S. Chakarova, K. Sieradzki, Phys. Rev. Lett., 71, 1585 (1993).
[37] E.D. Eliadis, R.C. Alkire, J. Electrochem. Soc., 145, 4 (1998).
[38] V. Randle, O. Engler, Introduction to Texture Analysis, CRC press, (2000).
[39] R. Abbaschian, Lara. Abbaschian, R. E. R. Hill, Physical Metallurgy Principles, Cengage Learning, (2009).
[40] N. Sakaguchi, M. Miyake, S. Watanabe, H. Takahashi, Mater. Trans., 52, 276 (2011).
[41] V. Randle, M. Caul, J. Fielder, Microsc. Microanal., 3, 224 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code