Responsive image
博碩士論文 etd-0726113-181850 詳細資訊
Title page for etd-0726113-181850
論文名稱
Title
可提升影像處理電路良率與可靠度之方法及其硬體設計
A Yield and Reliability Improvement Methodology and Its Hardware Design for Image Processing Circuits Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-30
繳交日期
Date of Submission
2013-08-28
關鍵字
Keywords
良率提升、超大型積體電路測試、錯誤容忍、內建自我測試、影像增強
yield improvement, VLSI testing, error-tolerance, built-in self-test, image enhancement
統計
Statistics
本論文已被瀏覽 5716 次,被下載 441
The thesis/dissertation has been browsed 5716 times, has been downloaded 441 times.
中文摘要
於近代熱門的積體電路設計與製造因為其相關產品廣泛的應用範圍與其可觀的利潤而吸引多人紛紛投入。然而隨著積體電路製造技術的進步,技術的開發碰觸到一個極限而使電路系統的製造良率下滑。對於許多需要精密運算的軍事和航太工業發展而言,電路的製造良率對這些領域的應用具有直接的影響。本研究以影像處理電路為例,配合影像處理及其他電路設計與測試的觀念提出一套可以提升影像處理電路良率及可靠度的硬體設計架構。藉由計算電路錯誤的發生率以及錯誤嚴重程度來評估晶片的可使用性,並將影像處理領域中的影像增強觀念納入設計的考量,使設計的系統除了能應用在一般無誤的影像外;亦能夠針對有誤電路所產生的錯誤影像進行處理使輸出結果盡可能接近人類視覺系統所能接受的範圍,藉由這樣的方法使得雖有錯誤但不嚴重的影像解碼器能夠加以運用而不致丟棄,進而提升晶片有效良率。在實驗結果中可以發現當影像解碼器在明亮度資料輸出發生錯誤且發生在最低有效位元附近四位元時,則輸出影像在視覺品質上都能為人眼接受;另一方面,不同明亮度資料錯誤的影像能在系統中經過適度的影像增強處理來改善影像的品質。在此論文中我們亦實現出一個影像增強處理電路之雛型以便在影像增強電路之效能及實用性上進行初步的評估。邏輯合成結果顯示此電路可在10 MHz的操作頻率下有效提升影像之品質,而面積約為37,757個邏輯閘的大小。
Abstract
With the shrinking of the feature size of transistors, chips become more sensible to manufacturing defects and/or external noises, which may cause low manufacturing yield. In this thesis, we propose a methodology for improving yield and reliability of image processing circuits. By carefully evaluating and analyzing image quality, the proposed methodology can not only improve the quality of an error-free image, but also reduce the error significance of an unacceptable erroneous image so as to maximize their acceptability in a certain application. The experimental results show that minor variations in image are almost insensible and one can easily increase the acceptability of an image using an appropriate image enhancement method. In this thesis we also implement a prototype of an image enhancement circuit to preliminarily evaluate the performance and practicability of image enhancement hardware. The logic synthesis results show that the implemented circuit can effectively enhance the quality of images at the operating frequency of 10 MHz, and the area is approximately 37,757 logic gates.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
圖次 vi
表次 viii
第一章 導論 1
第二章 相關技術發展近況 4
2.1 容錯設計簡介 4
2.2 容誤設計簡介 5
2.3 內建自我測試技術 6
2.4 影像增強技術 10
第三章 影像處理電路良率與可靠度提升方法 15
3.1 影像處理電路發生錯誤的可能情形 15
3.2 系統設計架構 16
3.3 影像增強演算法介紹與程式設計 22
3.4 影像增強系統設計 25
第四章 實驗與模擬結果 38
4.1 有誤影像解碼器對影像品質的影響 38
4.2 影像增強系統的軟體設計及分析 39
4.3 影像增強系統的電路合成結果 54
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來研究規劃 56
參考文獻 57
參考文獻 References
[1] J. A. Rivers and P. Kudva, “Reliability challenges and system performance at the architecture level,” IEEE Design & Test of Computers, 26(6): pp. 62-73, 2009.
[2] M. A. Breuer, S. K. Gupta and T. M. Mak, “Defect and error-tolerance in the presence of massive numbers of defects,” IEEE Design & Test of Computers, 21(3): pp. 216-227, 2004.
[3] T. Y. Hsieh, C. C. Ku and C. H. Yeh, “A yield and reliability enhancement framework for image processing applications,” IEEE Asia Pacific Conf. on Circuits and Systems, pp. 683-686, 2012.
[4] L.-T. Wang, C.-E. Stroud, and N. A. Touba, System-on-Chip Test Architectures: Nanometer Design for Testability, Morgan Kaufmann, 2008.
[5] C.-L. Hsu, Y.-S. Huang and T.-H. Liu, “SSD-based testing scheme for error tolerance analysis in H.264/AVC encoder,” Proc. Int’l. Conf. on Communications, Circuits and Systems, pp. 684-688, 2008.
[6] I. Chong and A. Ortega, “Hardware testing for error tolerant multimedia compression based on linear transforms,” Proc. Int’l Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 523-531, 2005.
[7] H. Chung and A. Ortega, “Analysis and testing for error tolerant motion estimation,” Proc. Int’l Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 514-522, 2005.
[8] C. L. Hsu, Y. S. Huang, M. D. Chang and H. Y. Huang, “Design of an error-tolerance scheme for discrete wavelet transform in JPEG 2000 encoder,” IEEE Trans. on Computers, 60(5): pp. 628-638, 2011.
[9] S. H. Kim, S. Mukhopadhyay and M. Wolf, “Modeling and analysis of image dependence and its implications for energy savings in error tolerant image processing,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 30(8): pp. 1163-1172, 2011.
[10] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[11] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, Third Edition, 2008.
[12] J. Mukherjee and S. K. Mitra, “Enhancement of color images by scaling the DCT coefficients,” IEEE Trans. on Image Processing, 17(10): pp. 1783-1794, 2008.
[13] J. B. Zimmerman, S. M. Pizer, E.V. Staab, J. R. Perry, W. McCartney and B. C. Brenton, “An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement,” IEEE Trans. on Medical Imaging, 7(4): pp. 304-312, 1988.
[14] J. Y. Kim, L. S. Kim and S. H. Hwang, “An advanced contrast enhancement using partially overlapped sub-block histogram equalization,” IEEE Trans. on Circuit and System for Video Technology, 11(4): pp. 475-484, 2001.
[15] A. Reza, "Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement," Journal of VLSI signal processing systems for signal, image and video technology, 38: pp. 35-44, 2004.
[16] V. Schatz, "Low-latency histogram equalization for infrared image sequences: a hardware implementation," Journal of Real-Time Image Processing, pp. 1-14, 2011.
[17] H. Y. Yang, T. C. Fan and H. W. Tsao, “Algorithm and architecture design of adaptive brightness correction for video application,” IEEE Trans. on Consumer Electronics, 54(4): pp. 1858-1866, 2008.
[18] T. Arici, S. Dikbas and Y. Altunbasak, “A histogram modification framework and its application for image contrast enhancement,” IEEE Trans. on Image Processing, 18(9), pp. 1921-1935, 2009.
[19] P. McLean, “Lecture 10-Fixed-Point Processing,” in Embedded Software (48434) Lecture Notes, pp. 1-11, University of Technology, Sydney, 2013.
[20] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Processing, 13(4), pp. 600-612, 2004.
[21] S. T. Welstead, Fractal and Wavelet Image Compression Techniques, SPIE Publication, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code