Responsive image
博碩士論文 etd-0726113-235158 詳細資訊
Title page for etd-0726113-235158
論文名稱
Title
以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件
Design and fabrication of 4G SAW device with AlN/Si3N4/Si Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
電子束微影製程技術、射頻磁控濺鍍法、表面聲波元件、Rayleigh 模態、氮化鋁薄膜
electron beam lithography, SAW device, Rayleigh-mode, AlN thin films, RF magnetron sputtering
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
本研究擬研製高頻(GHz) Rayleigh模態特性之表面聲波元件以應用於未來的4G之通訊頻段。本研究採用射頻磁控濺鍍法以成長氮化鋁壓電薄膜,並藉由調變沉積參數以提升其品質因子及機電耦合係數。本研究採用高導電性、低質量密度及價格低廉之鋁薄膜當作IDT電極,並利用電子束微影製程之技術來代替傳統光學微影之製程,分別製作出四組不同奈米線寬的IDT電極,再利用原子力顯微鏡與四點探針分析法以進行物性和電性分析。本研究為考量良率、成本、製程時間及光學解析度…等關鍵因素,將採用反光罩圖層設計法結合乾式蝕刻製程,來完成本研究所設計之四組不同奈米線寬(937 nm、750 nm 、562 nm 以及375 nm)之高頻SAW元件。本研究將完成之四組高頻SAW元件,利用網路分析儀E5071C搭配CASCADE探針座以進行元件頻率響應的量測。由頻率響應分析得知,線寬為937 nm、750 nm 、562 nm 以及375 nm時,其中心頻率分別為1.402 GHz、1.812 GHz、2.425 GHz以及3.747 GHz,可分別應用於不同之通訊頻帶當中,例如:本研究所製作開發之375nm線寬之高頻SAW元件,其可應用於第四代 (4G)通訊之LTE Band 41通訊規格(3.4~3.6 GHz)中;而562 nm線寬之高頻SAW元件,其可應用於第三代 (3G)通訊之WCDMA(2 GHz)通訊規格中。
Abstract
In this study, high-frequency Rayleigh-mode surface acoustic wave (SAW) devices were employed to construct the 4th generation (4G) mobile telecommunication. To fabricate high-frequency Rayleigh-mode SAW devices, the RF magnetron sputtering method for the growth of piezoelectric AlN thin films are adopted and influences of the sputtering parameters are investigated. After the AlN/Si3N4/Si structure was formed, the IDT (Al) electrodes were attached to the AlN surfaces by using the electron beam lithography method, which have a low resistivity, a low unit cost, and a low density.In order to be applicated in the global systems for mobile communication, four kinds of IDT width were performed on the AlN/Si3N4/Si structure at937nm,750 nm, 562 nm and 375 nm, respectively.The center-frequencies of the four kinds of high-frequency Rayleigh-mode SAW devices are 1.4 GHz, 1.8 GHz, 2.4 GHzand 3.7 GHz, respectively.The processing method adopted in this report contributed significantly to the desired high-frequency SAW devices for the wireless communication system.
目次 Table of Contents
摘要……………………………………………………………………………………i
目錄…………………………………………………………………………………...iii
圖目錄………………………………………………………………………………...vi
表目錄…………………………………………………………………………………x
第一章前言 1
1.1研究背景與動機 1
1.2高頻表面聲波元件 5
1.3 研究內容 9
第二章理論分析 10
2.1 氮化鋁結構與特性 10
2.2 壓電理論 13
2.2.1 壓電效應 14
2.2.2 壓電材料 15
2.3 反應性磁控濺鍍…………….………………………………………………..…16
2.3.1 輝光放電 16
2.3.2 磁控濺射 17
2.3.3 射頻濺射 18
2.3.4 反應性濺射 19
2.4 薄膜成長機制 20
2.5 薄膜分析 22
2.5.1 X-ray繞射分析 22
2.5.2掃描式電子顯微鏡分析 23
2.5.3原子力顯微鏡分析 23
2.6 乾式蝕刻製程 24
2.7 表面聲波元件理論和特性 27
2.7.1 表面聲波元件基本設計與特性 27
2.7.2 雷利波 30
2.8 表面聲波元件種類 31
2.8.1 表面聲波濾波器 31
2.8.2 表面聲波共振器 33
2.9 表面聲波元件參數性質 34
2.9.1聲波波速 34
2.9.2插入損失 34
2.9.3機電耦合係數 36
2.10電子束微影製程技術 37
第三章實驗 39
3.1實驗流程 39
3.2基板清洗 41
3.3 薄膜沉積 42
3.3.1射頻磁控濺鍍系統 42
3.3.2直流磁控濺鍍系統 45
3.4 薄膜物性分析 47
3.4.1 X光繞射分析 47
3.4.2掃描式電子顯微鏡 49
3.4.3原子力顯微鏡 50
3.4.4雙束型聚焦離子束顯微鏡 51
3.5薄膜電性分析 52
3.6高頻表面聲波元件製作流程 53
3.6.1 正、反光罩圖層之設計 53
3.6.2 IDT指叉電極設計 59
3.7黃光製程 60
3.8電子束微影製程 61
3.9ICP製程 62
3.10SAW元件網路分析儀量測 63
第四章結果與討論 64
4.1氮化鋁薄膜之特性分析 64
4.1.1濺鍍壓力 64
4.1.2濺鍍功率 68
4.1.3基板溫度 73
4.2 Al電極之電性與物性分析 77
4.3 SAW元件設計與製作 78
4.3.1 正、反光罩圖層之設計與製作 78
4.3.2 電子束微影製程 81
4.4 過蝕刻現象改善 86
4.5 元件頻率響應.......................................................................................................89
第五章結論 96
參考文獻 98
參考文獻 References
[1](媒體報導,無作者):手機問世40周年!黑金鋼變超輕薄(民102年4月4日),自由時報電子報。取自:http://iservice.libertytimes.com.tw/liveNews/news.php
[2] 張景淳,“表面聲波元件模型之建立與應用” ,中原大學電子工程學系碩士論
文,2005.
[3](資料庫):手機出貨觀察指標之研究(民84年7月20日),MoneyDJ
取自:http://www.moneydj.com/kmdj/report/ReportViewer
[4] 王宏文,“淺談表面聲波感測器”,工業材料-精密陶瓷專輯(第89期) ,1994.
[5] 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研
究”,國立中山大學電機工程研究所碩士論文,2012.
[6] 游明峰,“高頻表面聲波阻抗元件製作與量測” 國立中興大學精密工程研
究所碩士論文,2003.
[7] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid.”Proceedings of the London Mathematical Society, vol. 17, pp. 4-11,1885.
[8] Meirion F Lewis, “Rayleigh Waves-a Progress Report”, Eur. J. Phys,1994.
[9] Jacob Fraden, “Handbook of Modern Sensors: Physics, designs, and Applications”, Springer-Verlag New York, Inc, 1996.
[10] 范秉舜,“利用Fluoropolyol薄膜與表面聲波元件之氣體辨識研究”,私立
中原大學,2007.
[11] Julian W. Garder,Vijay K.Varadan,Osama O.Awadelkarim, “Microsensors MEMS
and Smart Devices”, pp. 319-334, pp. 359-395,2001.
[12] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,”Appl.Phys.Lett, vol. 17, pp. 314-316, 1965.
[13] J. G. Rodriguez-Madrid, G. F. Iriarte, J. Pedros, O. A. Williams, D. Brink, and F. Calle, Member, “Super-High-Frequency SAW Resonators on AlN/Diamond” , IEEE,2012.
[14] M. B. Assouar,aO. Elmazria, P. Kirsch, and P. AlnotLaboratoire “High-frequency surface acoustic wave devices based on AlN/diamond layered structure realized using e-beam lithography” , Journal of Applied Physics , 2007.
[15] P. Kirsch, M. B.Assouar,O. Elmazria,V. Mortet, and P. Alnot, “5GHz surface acoustic wave devices based on aluminum nitride/diamond layered structure realized using electron beam lithography”,2006.
[16]Takagaki,P.V.Santos,E.Wiebicke,O.Brandt,H.P.Schonherretal,“Super-Frequency Surface Acoustic Wave transducers using AlN layers grown on SiC Substrates”, Applied Physics Letters,2002.
[17] 歐俊裕,“電子束微影術製作高頻表面聲波元件”,中興大學物理系,2002.
[18] Sheng-Min Huang, “The Study of SAW Integrated Array Sensors” Electronic Engineering,2003.
[19]A.F.Belyanin,L. Bouilov,V. zhirnov,A.I. Kamenev,K.Kovalskij, “Diamond and Related Materials”,1999.
[20] Nakakuki, M.,Shiono, A., Kobayashi,I.,Tajima,N.,Yamakami,T,Hayashibe,
K.Kamimura, K.Obata,M. Miyamoto, “Characterization of Al-based insulating films fabricated by physical vapor deposition.”Japanese Journal of Applied Physics-Part 1 Regular Papers and Short Notes 47,pp.609-611, 2008.
[21] Ohta, J. Fujioka, H. Sumiya, M. Koinuma, H. Oshima, M. “Epitaxial growth of AlN on (La, Sr)(Al, Ta) O3(111) substrate by laser MBE.”J. Cryst Growth,2001.
[22] Strite, S. Morkoc, “GaN, AlN, and InN a review.”Journal of Vacuum Science & Technology ,1992.
[23] Butcher, K. S. A. Tansley, T. L. “Ultrahigh resistivity aluminum nitride grown on mercury cadmium telluride.”J. Appl. Phys, 2001.
[24] Yang, C.M.Uehara, K.Kim, S.K, Kameda, S,Nakase, H.Tsubouchi, “Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter.”, IEEE, 2003.
[25] Mastro, M.A. Eddy, C. R. “MOCVD growth of thick AlN and GaN superlattice structures on Si substrates.”J. Cryst. Growth287,pp. 610-614 ,2006.
[26] Schenk,H.P.D.Kaiser,U.Kipshidze,G.D,Fissel, A.Krulich, J.Hobert, H.Schulze, “Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE.”Materials Science and Engineering ,pp. 84-87 ,1999.
[27]Mansurov,V.G.Nikitin,A.Y.Galitsyn,Y.G.Svitasheva,S.N.Zhuravlev,L.Horvath,
Z.E.&Pecz, B.“AlN growth on sapphire substrate by ammonia MBE.”J. Cryst.
Growth 300, 145-150,2007.
[28] R.D Vispute,Hong Wu and J.Narayan,Appl. Phys.Lett,1995.
[29] Assouar, M. B. Elmazria, O.Le Brizoual, L. Alnot, “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices.”Diamond and related materials 11,2002.
[30] Kao, K. S. Cheng, C. C. “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave.”Appl.Phys,2001.
[31]吳朗,“電子陶瓷-壓電陶瓷”,全欣資訊圖書,1994.
[32] Kim, B.K., Lee, Y.H., Lee, S.H., Lee, J.K.& Kim, S.W.“A noble suspended type thin film resonator (STFR) using the SOI technology.”Sensors and Actuators A: Physical 89, pp.255-258 ,2001.
[33] Kirby, P. B., Potter, M. D. G., Williams, C. P. & Lim, M. Y. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators.”Journal of the European Ceramic Society 23,2003.
[34] 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會, 1993.
[35] 黃肇瑞,“陶瓷技術手冊 (下 ) ”,pp.777,1995.
[36] Q.X. Su, P. Kirby, E.Komuro, M.Imura, Q.Zhang, “Whatmore, R. Thin-filmbulk acoustic resonators and filters using ZnO and lead-zirconium-titanatethinfilms,” Microwave Theory and Techniques, IEEE Transactions on, pp. 769-778, 2001.
[37] 施敏、張俊彥,“半導體元件之物理與技術”,儒林,1990
[38] Berry, R. W, Hall, P. M. & Harris, M. T. “Thin film technology.” D.VAN NOSTRAND CO, INC, PRINCETON, N.J ,1968.
[39] J.L. Vossen and W. Kern, “Thin film processes II,”AcademicPr, 1991.
[40] Janczak Bienk, E. Jensen, H. Sorensen, “The influence of the reactive gas flow
on the properties of AIN sputter-deposited films.”Materials Science and
Engineering: A 140, 696-701 ,1991.
[41] 吳泰伯、許樹恩,“X 光繞射原理與材料結構分析”,中國材料科學學會,1996.
[42] (資料庫資料):蝕刻技術。取自:http://me.csu.edu.tw/swl/non/ch7/ch7.pdf
[43] C. K. Campbell,“Surface Acoustic Wave Devices for Mobile and Wireless communications”,Academic Press, 1998.
[44] 李其源,“蝕刻晶片厚度即時監控之新穎方法”,國立台灣大學機械工程研究所博士論文,2004.
[45] 蕭价伶,“非接觸式光學檢測應用於 FPW 元件量測技術”,國立中央大學光電研究所碩士論文,2005.
[46] J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, “Microsensors, MEMS, and smart devices,” John Wiley & Sons, 2001.
[47] C. Campbell and J.C. Burgess, “Surface acoustic wave devices and their signal processing applications” ,Soc, vol. 89, pp. 1479-1480, 1991.
[48] R. Ro, S.Y. Chang, R.C. Hwang and D.H. Lee, “Identification of ionic solutions using a SAW liquid sensor.”, Part A: Physical Science and Engineering,vol 23, pp. 810-815, 1999.
[49] 朱慕道, 表面聲波元件與應用, 新電子期刊, p183~186, 1994.
[50]C. Campbell,“Surface acoustic wave devices for mobile and wireless communications,”Academic Press, pp. 108-113 ,INC, 1989.
[51] R. Pallas-Areny and J.G. Webster, “Sensors & signal conditioning,” Recherche, vol. 67, 2000.
[52] H. Matthews, “Surface Wave Filters Design, Construction, and Use”, 1979.
[53] A. J. Slobodnik, J. R. Thomas “SAW device”,Slobodnik, 1979.
[54](資料庫資料,蘇俊鐘):電子束微影術(民94年7月19日),國家高速網路計算中心。取自:http://nano.nchc.org.tw/v1/dictionary/ebl.html.
[55] Philip Coane, “Introduction to electron beam lithography”, from the world wide
Web:http://140.120.11.121/~denda/Upload/paper.
[56]J.W.Mayer and S.S Lau,“Electoricm Materials ”,Macmillian,pp.35, 1990.
[57] 謝蔚諮、吳仲卿,“電子束微影術及磁力顯微術的應用--奈米磁性薄膜的製作及分析”, 科儀新知,2002.
[58] 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系博士班學位論文,2004.
[59]鄭建銓,“質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究”,中山大學博士論文,1996.
[60] G.Este, W. D. Westwood,“Measurement of intrinsic stresses during growth of aluminum nitride thin films by reactive sputter deposition”,J. Appl. Phys,1987.
[61] Sorab K. Ghandhi, “VLSI Fabrication Principles Silicon and Gallium Arsenide ”, pp.575,1994.
[62] 蔡佳龍,“製程參數對濺射沉積氮化鋁薄膜之影響”,中山大學碩士論文,2000.
[63] 鄭博書,“製做於矽基板之表面聲波振盪器作為紫外光感測之研究”,中山大學碩士論文,2008.
[64] 黃元伯,“耦合諧振結構表面聲波元件特性之探討”,成功大學電機工程碩士論文,2003.
[65] 林志明,“層狀寬頻表面聲波濾波器,國立台灣大學應用力學研究所碩士論文”,2003.
[66] J.Curie and P.curie, “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces”,Applied Sciences,vol.3,pp.93,1880.
[67] W.G.Hankel and Abh.Sachs,“Piezoelectric”Applied Sciences,vol.12,pp.547.1881.
[68] 簡俊謙,“表面聲波元件之設計及其在寬頻振盪器之應用”,國立交通大學電信工程研究所碩士論文,2000.
[69] 盧建彰,“應用微帶線結構於表面聲波濾波器之研究”,國立成功大學微電子所碩士論文,2003.
[70] S.H. Tsai, I.T. Tang, M.P. Houng, Y.H.Wang, “A Design Rule of Surface soustic Wave Filter”, J.M.S.E., Vol.34, No.4, pp.231-238, 2002.
[71] C. K. Campbell , “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp.168,1997.
[72] C. K. Campbell , “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp.410,1997.
[73] 楊畯閎,“剪模態氮化鋁薄膜體聲波共振器之液態感測器研製”,國立中山大學電機工程系碩士論文,2011.
[74] 劉吉卿,“以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用”,國立中山大學電機工程系碩士論文,2006.
[75]George Konstantinids, George Deligeorgis,Adrain Dinescu, Antonis Stavrinidis,
Alina Cismaru,Mircea Dragoman and Alexandra Stefanescu,“SAW device manufactured on GaN/Si for frequencies beyond 5GHz”,IEEE Transactions,pp.1398 -1400,2012.
[76]Qi Jie Wang, Christian Pflugl, William F. Andress, Donhee Ham, and Federico Capassob School of Engineering and Applied Sciences, Harvard University, Cambridge, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III-V semiconductor Substrates” , Applied Sciences,2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.82.23
論文開放下載的時間是 校外不公開

Your IP address is 3.139.82.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code