Responsive image
博碩士論文 etd-0726114-105347 詳細資訊
Title page for etd-0726114-105347
論文名稱
Title
利用掃描穿隧顯微鏡研究多鐵性材料奈米級域壁的電子結構
Scanning tunneling microscopy investigation of electronic structures across nano-scale domain walls in multiferroics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-10
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
多鐵性材料、域壁、掃描穿隧顯微鏡、電子特性、同質介面
domain wall, homo-interface, electronic property, multiferroics, cross-sectional scanning tunneling microscopy
統計
Statistics
本論文已被瀏覽 5674 次,被下載 466
The thesis/dissertation has been browsed 5674 times, has been downloaded 466 times.
中文摘要
近期以來,介面研究成為熱門的議題,因為材料的尺寸不斷縮小,造成介面特性的重要性比重日益增加。在本研究中,利用剖面掃描穿隧顯微鏡觀察奈米材料同物質(不同物理特性)接面間的介面電子特性。
本文的研究主題主要探討多鐵性材料 BiFeO3域壁的電子特性。內容包含了四個研究成果:(1)在BiFeO3的71度域壁,因為具有較小的能隙造成導電的同質介面。(2) BiFeO3上的109度域壁,與71度域壁相比,因擁有較小的能隙,表現出比71度域壁更導電的現象。(3)材料成長上,利用基板的晶格結構可控制多鐵性材料BiFeO3域壁的結構方式。量測結果上,在BiFeO3基板上成長90度域壁,發現其能帶邊界的變化程度是不同於71度與109度的變化。 (4)利用BiFeO3為基底,域壁與電域的存在影響鐵磁性材料La0.7Sr0.3MnO3薄膜出現域壁,且其域壁的能隙比La0.7Sr0.3MnO3本身的電域縮小0.3eV。同時,研究期間亦參與在重摻雜硫的矽晶體上,發現有絕緣態轉金屬態的現象。在存有金屬態的區域上,發現雜質能帶的產生。相關結果同時附錄在本論文中
利用這些資訊可以知道同質介面在材料中的影響範圍及電子特性,進而對未來奈米材料的應用及研究方向提供直接量測的資訊。
Abstract
Recently, downsizing of the device causes the ratio of the interface to increase, which subsequently makes the research on interface characteristics more important. In this work, the electronic properties of the homo-interfaces are studied using cross-sectional scanning tunneling microscopy (XSTM).
The thesis includes the following four topics on multiferroic materials, BiFeO3. The evolution of the electronic structures across the domain walls in BiFeO3 is investigated by XSTM. (1) At 71° domain wall of BiFeO3, experimental results show that the decrease of the energy band gap induces the conductive homo-interface. (2) Compared with 71° domain wall, 109° domain wall of BiFeO3 has the smaller energy band gap. (3) 90° domain wall is found on BiFeO3 because the substrate effect alters the a/c ratio of BiFeO3 thin film. The decrease variation of the energy band edge at 90° domain wall is different to that at 71° domain wall and 109° domain wall. (4) Due to the domain wall of BiFeO3 at the La0.7Sr0.3MnO3/ BiFeO3 system, the domain wall is generated on the ferromangentic material La0.7Sr0.3MnO3. The energy band gap on the domain wall of La0.7Sr0.3MnO3 is ~0.7 eV, which is smaller than the mid-domain about 0.3 eV. In addition, in this thesis, the evolution of the electronic structures across the homo-interface of the dopant distribution on supersaturated sulfur-doped silicon is also discussed. The insulator-to-metal transition is directly observed in our experiment. In addition, the impurity band of the supersaturated sulfur-doped system is also demonstrated by using STM local measurements.
The electronic properties provide the information for future applications and researches.
目次 Table of Contents
中文摘要 I
Abstract II
致謝 IV
Table of contents V
List of figures captions VII
Chapter 1 Introduction 1
1.1 Interfaces 1
1.2 Homo-interfaces 2
Chapter 2 Experimental instrumentations and methods 5
2.1 Cross-sectional scanning tunneling microscopy 5
2.2 Principle of scanning tunneling microscopy 7
2.3 Principle of scanning tunneling spectroscopy 10
2.3.1 Physical meaning of dI/dV 10
2.4 Scanning tunneling microscopy operating mode 11
2.5 Tip preparation 15
2.6 Theory calculation:Considering the tip-induced band bending effect (TIBB) 16
Chapter 3 The 71° domain wall at the multiferroic material, BiFeO3 [45] 21
3.1 Introduction 21
3.2 Sample preparation 24
3.3 STM Results and discussion 25
3.3.1 Topographic and electronic property at SrTiO3 substrate 25
3.3.2 Confirmation the interface location between BiFeO3 and Nb-doped SrTiO3 26
3.3.3 Analysis of the electronic properties across 71° domain wall 28
3.4 Summary 32
Chapter 4 The 109° domain wall at the multiferroic material, BiFeO3 [45] 33
4.1 Introduction 33
4.2 Sample preparation 33
4.3 STM Results and discussion 34
4.3.1 Analysis of the electronic properties across the 109° domain wall 34
4.4 Summary 38
Chapter 5 The 90° domain wall at the multiferroic material, BiFeO3 [66] 39
5.1 Introduction 39
5.2 Sample preparation 41
5.3 STM Results and discussion 42
5.3.1 Analysis of the electronic properties at the InTiO3/BiFeO3/NdScO3 interfaces 42
5.3.2 Analysis of the electronic properties across the 90° domain wall 44
5.4 Summary 46
Chapter 6 The domain wall at the ferromagnetic material, La0.7Sr0.3MnO3 47
6.1 Introduction 47
6.2 Sample preparation 48
6.3 STM Results and discussion 49
6.3.1 Topographic and electronic properties at the La0.7Sr0.3MnO3/BiFeO3/DyScO3 interface 49
6.3.2 Analysis of the electronic properties across the domain wall at La0.7Sr0.3MnO3 thin film 50
6.4 Summary 53
Chapter 7 Conclusions 55
Reference 57
Appendix A 62
A.1 The impurity band at the solar cell, S-doped Si [76] 62
A.1.1 Introduction 62
A.1.2 Sample preparation 63
A.1.3 STM Results and discussion 64
A.1.4 Summary 74
Publication list 75
參考文獻 References
1. G. E. Moore, Proceedings of the IEEE 86, 82 (1998).
2. B. C. Huang, Y. T. Chen, Y. P. Chiu, Y. C. Huang, J. C. Yang, Y. C. Chen and Y. H. Chu, Applied Physics Letters 100, 122903 (2012).
3. M. C. Shih, B. C. Huang, C. C. Lin, S. S. Li, H. A. Chen, Y. P. Chiu and C. W. Chen, Nano Lett 13, 2387-2392 (2013).
4. D. Lee, S. H. Baek, T. H. Kim, J. G. Yoon, C. M. Folkman, C. B. Eom and T. W. Noh, Physical Review B 84, 125305 (2011).
5. E.-A. Choi and K. J. Chang, Applied Physics Letters 94 (2009).
6. J. F. Scott, K. Watanabe, A. J. Hartmann and R. N. Lamb, Ferroelectrics 225, 83-90 (1999).
7. M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou and K. Y. Cheng, Applied Physics Letters 76, 312 (2000).
8. Y. P. Chiu, B. C. Huang, M. C. Shih, J. Y. Shen, P. Chang, C. S. Chang, M. L. Huang, M. H. Tsai, M. Hong and J. Kwo, Applied Physics Letters 99 (2011).
9. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Advanced materials 11, 605 (1999).
10. H. Y. H. Akira Ohtomo, Nature 427, 423 (2004).
11. B.-C. Huang, Y.-P. Chiu, P.-C. Huang, W.-C. Wang, V. T. Tra, J.-C. Yang, Q. He, J.-Y. Lin, C.-S. Chang and Y.-H. Chu, Physical Review Letters 109, 246807 (2012).
12. S. Zapperi and P. Cizeau, Physical Review B 58, 6353 (1998).
13. P. Cizeau, S. Zapperi, G. Durin and H. E. Stanley, Physical Review Letters 79, 4669 (1997).
14. T. J. Yang, V. Gopalan, P. J. Swart and U. Mohideen, Physical Review Letters 82, 4106 (1999).
15. W. Merz, Physical Review 95, 690-698 (1954).
16. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, Nature materials 1, 106-110 (2002).
17. H.-J. Choi, H.-K. Seong, J.-C. Lee and Y.-M. Sung, Journal of Crystal Growth 269 (2004).
18. M. T. Winkler, D. Recht, M.-J. Sher, A. J. Said, E. Mazur and M. J. Aziz, Physical Review Letters 106, 178701 (2011).
19. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar and A. Karger, Applied Physics Letters 78, 1850 (2001).
20. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur and F. Y. Genin, Applied Physics A 79, 1635 (2004).
21. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu and T. Shinjo, Physical Review Letters 92, 077205 (2004).
22. H. Koo, C. Krafft and R. D. Gomez, Applied Physics Letters 81, 862 (2002).
23. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, 3rd, L. W. Martin and R. Ramesh, Nature nanotechnology 5, 143-147 (2010).
24. Y.-H. Chu, Q. He, C.-H. Yang, P. Yu, L. W. Martin, P. Shafer and R. Ramesh, Nano letters 9, 1726 (2009).
25. T. Tybell, P. Paruch, T. Giamarchi and J. M. Triscone, Physical Review Letters 89, 097601 (2002).
26. B. Meyer and D. Vanderbilt, Physical Review B 65, 104111 (2002).
27. Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. H. Arima and Y. Tokura, Nature materials 8, 558-562 (2009).
28. M. Enachescu, R. J. A. v. d. Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse and M. Salmeron, Physical Review Letters 81
1877 (1998).
29. K. D. Jandt, Surface Science 491, 303 (2001).
30. C. Ballif, D. M. Huljić, G. Willeke and A. Hessler-Wyser, Applied Physics Letters 82, 1878 (2003).
31. S. F. Lyuksyutov, R. A. Vaia, P. B. Paramonov, S. Juhl, L. Waterhouse, R. M. Ralich, G. Sigalov and E. Sancaktar, Nature materials 2, 468-472 (2003).
32. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein and R. Ramesh, Nature materials 8, 229-234 (2009).
33. V. Shvartsman and A. Kholkin, Physical Review B 69, 014102 (2004).
34. A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt and T. Zabel, Journal of Applied Physics 90 (2001).
35. J. Bernhardt, J. Schardt, U. Starke and K. Heinz, Applied Physics Letters 74, 1084 (1999).
36. B. Bolliger, M. Erbudak, M. Hong, J. Kwo, A. R. KOrtan and J. P. Mannaerts, Surface and Interface Analysis 30, 514 (2000).
37. G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Physical Review Letters 49, 57-61 (1982).
38. G. Binnig and H. Rohrer, Surface Science 126, 236-244 (1983).
39. D. A. Bonnell, VCH (1993).
40. R. M. Feenstra, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2080 (2003).
41. L. Ivanova, S. Borisova, H. Eisele, M. Dähne, A. Laubsch and P. Ebert, Applied Physics Letters 93, 192110 (2008).
42. R. M. Feenstra, Y. Dong, M. P. Semtsiv and W. T. Masselink, Nanotechnology 18, 044015 (2007).
43. M. Hirayama, J. Nakamura and A. Natori, Journal of Applied Physics 105, 083720 (2009).
44. J. Tersoff and D. R. Hamann, Physical Review Letters 50, 1998-2001 (1983).
45. Y. P. Chiu, Y. T. Chen, B. C. Huang, M. C. Shih, J. C. Yang, Q. He, C. W. Liang, J. Seidel, Y. C. Chen, R. Ramesh and Y. H. Chu, Adv Mater 23, 1530-1534 (2011).
46. M. Fiebig, Journal of Physics D: Applied Physics 38, R123-R152 (2005).
47. Y. Tokura, Science 312, 1481 (2006).
48. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin and R. Ramesh, Science 326, 977-980 (2009).
49. C. Blaauw and F. v. d. Woude, Journal of Physics C: Solid State Physics 6, 1422 (1973).
50. Y.-H. Chu, L. W. Martin, M. B. Holcomb and R. Ramesh, Materials Today 10, 16-23 (2007).
51. H. Feng, Journal of Magnetism and Magnetic Materials 322, 3755-3759 (2010).
52. G. Catalan and J. F. Scott, Advanced Materials 21 (2009).
53. F. Kubel and H. Schmid, Acta crystallographica section B 46, 698 (1990).
54. M. Cruz, Y. Chu, J. Zhang, P. Yang, F. Zavaliche, Q. He, P. Shafer, L. Chen and R. Ramesh, Physical Review Letters 99, 217601 (2007).
55. M. Ramazanoglu, W. Ratcliff, H. T. Yi, A. A. Sirenko, S. W. Cheong and V. Kiryukhin, Physical Review Letters 107, 067203 (2011).
56. J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S. Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C. H. Yang, J. C. Yang, Y. H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron and R. Ramesh, Physical Review Letters 105, 197603 (2010).
57. J. Neaton, C. Ederer, U. Waghmare, N. Spaldin and K. Rabe, Physical Review B 71, 014113 (2005).
58. H. Yang, H. M. Luo, H. Wang, I. O. Usov, N. A. Suvorova, M. Jain, D. M. Feldmann, P. C. Dowden, R. F. DePaula and Q. X. Jia, Applied Physics Letters 92, 102113 (2008).
59. S. M. Guo, Y. G. Zhao, C. M. Xiong and P. L. Lang, Applied Physics Letters 89, 223506 (2006).
60. M. Dawber, K. M. Rabe and J. F. Scott, 77, 1083 (2005).
61. A. Lubk, S. Gemming and N. Spaldin, Physical Review B 80, 104110 (2009).
62. S. J. Clark and J. Robertson, Applied Physics Letters 90 (2007).
63. M. Pratzer, H. Elmers, M. Bode, O. Pietzsch, A. Kubetzka and R. Wiesendanger, Physical Review Letters 87, 127201 (2001).
64. C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh, Nature materials 8, 485-493 (2009).
65. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle and R. W. Schwartz, Journal of Applied Physics 76, 4305 (1994).
66. J. C. Yang, C. H. Yeh, Y. T. Chen, S. C. Liao, R. Hung, H. J. Liu, C. C. Hung, S. H. Chen, S. L. Wu, C. H. Lai, Y. P. Chiu, P. W. Chiu and Y. H. Chu, Nanoscale (Submitted) (2014).
67. R. M. Feenstra, Physical Review B 50, 4561 (1994).
68. P. Mårtensson and R. Feenstra, Physical Review B 39, 7744-7753 (1989).
69. D. P. Kozlenko, I. N. Goncharenko, B. N. Savenko and V. I. Voronin, Journal of Physics: Condensed Matter 16, 6755-6762 (2004).
70. E. J. Kim, J. L. R. Watts, B. Harteneck, A. Scholl, A. Young, A. Doran and Y. Suzuki, Journal of Applied Physics 109, 07D712 (2011).
71. L. You, B. Wang, X. Zou, Z. S. Lim, Y. Zhou, H. Ding, L. Chen and J. Wang, Physical Review B 88, 184426 (2013).
72. H. Jalili, J. W. Han, Y. Kuru, Z. Cai and B. Yildiz, The Journal of Physical Chemistry Letters 2, 801-807 (2011).
73. K. Horiba, A. Chikamatsu, H. Kumigashira, M. Oshima, N. Nakagawa, M. Lippmaa, K. Ono, M. Kawasaki and H. Koinuma, Physical Review B 71, 155420 (2005).
74. S. Seiro, Y. Fasano, I. Maggio-Aprile, E. Koller, O. Kuffer and Ø. Fischer, Physical Review B 77, 020407(R) (2008).
75. U. Singh, S. Chaudhuri, S. Choudhary, R. Budhani and A. Gupta, Physical Review B 77, 014404 (2008).
76. Y. T. C. e. al, (Submitted) (2014).
77. H. G. Grimmeiss, E. Janzén and B. Skarstam, Journal of Applied Physics 51, 4212 (1980).
78. S. Z. Karazhanov, Journal of Applied Physics 89, 4030 (2001).
79. C. B. Simmons, A. J. Akey, J. J. Krich, J. T. Sullivan, D. Recht, M. J. Aziz and T. Buonassisi, Journal of Applied Physics 114, 243514 (2013).
80. E. Janzén, R. Stedman, G. Grossmann and H. Grimmeiss, Physical Review B 29, 1907-1918 (1984).
81. L. Cuadra, A. Martı́ and A. Luque, Thin Solid Films 451-452, 593-599 (2004).
82. T. G. Kim, J. M. Warrender and M. J. Aziz, Applied Physics Letters 88, 241902 (2006).
83. T. Nozawa and Y. Arakawa, Applied Physics Letters 98, 171108 (2011).
84. A. Luque and A. Marti, Physical Review Letters 78, 5014 (1997).
85. M. A. Sheehy, B. R. Tull, C. M. Friend and E. Mazur, Materials Science and Engineering: B 137, 289-294 (2007).
86. N. López, L. A. Reichertz, K. M. Yu, K. Campman and W. Walukiewicz, Physical Review Letters 106, 028701 (2011).
87. J. J. Blecher, T. A. Palmer and T. DebRoy, Journal of Applied Physics 112, 114906 (2012).
88. J. J. Blecher, T. A. Palmer, E. W. Reutzel and T. DebRoy, Journal of Applied Physics 112 (2012).
89. J. Bonse, G. Mann, J. Krüger, M. Marcinkowski and M. Eberstein, Thin Solid Films 542 (2013).
90. A. B. Odobescu and S. V. Zaitsev-Zotov, Journal of physics. Condensed matter : an Institute of Physics journal 24, 395003 (2012).
91. E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi and J. C. Grossman, Physical Review Letters 108, 026401 (2012).
92. H. Shao, C. Liang, Z. Zhu, B.-Y. Ning, X. Dong, X.-J. Ning, L. Zhao and J. Zhuang, Applied Physics Express 6, 085801 (2013).
93. K. Sánchez, I. Aguilera, P. Palacios and P. Wahnón, Physical Review B 82, 165201 (2010).
94. A. Luque and A. Marti, Adv Mater 22, 160-174 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code