Responsive image
博碩士論文 etd-0726114-150937 詳細資訊
Title page for etd-0726114-150937
論文名稱
Title
以氧化鈦與氧化鋁堆疊層為三五族半導體金氧半電晶體閘極氧化層之特性分析
Characterization of III-V Compound Semiconductor MOSFETs with Titanium Oxide and Aluminum Oxide Stacked Layers as Gate Oxides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-26
關鍵字
Keywords
三五族半導體、金氧半結構、硫化、氧化鈦、氧化鋁
Aluminum Oxide, Titanium Oxide, III-V Compound Semiconductor, MOS Structures, (NH4)2S treatment
統計
Statistics
本論文已被瀏覽 5717 次,被下載 0
The thesis/dissertation has been browsed 5717 times, has been downloaded 0 times.
中文摘要
由於三五族半導體(砷化鎵(GaAs),磷化銦(InP),砷化銦鎵(InGaAs))具有高的電子遷移率,所以被廣泛應用在高速元件上。另外,因為TiO2 與GaAs, InP和InGaAs 擁有良好的晶格匹配特性以及高的介電常數(k = 35-100),所以我們選擇TiO2 作為閘極氧化層薄膜,且因Al2O3具有高的能隙(Eg = 9 eV)與自我清潔能力(Self-cleaning),故利用氧化鈦與氧化鋁堆疊層來抑制漏電流,並提高電容值。
三五族半導體因其不穩定的原生氧化層(native oxide)使其擁有高的界面能態密度(interface state density, Dit)而影響界面品質,造成C-V 曲線有拉伸(stretch-out)的現象以及高的漏電流。使用原子層沉積系統(ALD)在基板上生長之氧化鈦(TiO2)與氧化鋁(Al2O3)薄膜,藉由堆疊的雙層結構其氧化鈦之較高介電常數,與氧化鋁較大之能隙與自我清潔能力來改善單層的缺點,降低漏電流。
利用硫化銨((NH4)2S)水溶液對三五族半導體進行表面硫化處理(S-III-V Compound)可以有效去除原生氧化層以及填補半導體表面懸鍵,形成硫原子鍵結薄膜,使其界面品質大幅改善,故在漏電流方面可大為改善。其漏電流分別降至電場分別為7.31 x 10-7,3.11 x 10-6 與7.40 x 10-7 A/cm2 at ±2.0MV/cm。因此,對於三五族半導體之元件製備過程中,藉由硫化處理以鈍化表面形成硫化薄膜為必要之步驟。
Abstract
Due to the high electron mobility compared with Si, much attention has been focused on III-V compound semiconductors (gallium arsenide (GaAs), indium phosphide (InP), indium gallium arsenide (InGaAs)) high-speed devices. The high-k material TiO2 not only has high dielectric constant (k =35-100) but also has well lattice match with GaAs, InP and InGaAs substrate. Therefore, titanium oxide (TiO2) was chosen to be the gate oxide in this study, and aluminum oxide (Al2O3) has high bandgap (Eg~9eV) and self-cleaning capability, we use TiO2 and Al2O3 stack layers to decrease leakage currents and increase capacitance.
The major problem of III-V compound semiconductor is known to have poor native oxide on it leading to the Fermi level pinning at the interface of oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. Use atomic layer deposition (ALD) system to grow stack double layers ALD-TiO2 and ALD-Al2O3 films on III-V substrate by high-k of TiO2 and high bandgap and self-cleaning capability of Al2O3 to reduce only one layer’s defect.
The surface passivation of III-V with (NH4)2S treatment (S-III-V) could prevent it from oxidizing after cleaning and improve the interface properties of MOSFET. The leakage current of sulfur passivation can be improved. The leakage current densities are 7.31 x 10-7, 3.11 x 10-6 and 7.40 x 10-7 A/cm2 at ±2.0MV/cm, respectively. The (NH4)2S is necessary to passivation III-V surface form S-thin film of fabrication of III-V devices.
目次 Table of Contents
論文審定書 i
ACKNOWLEDGMENT ii
摘 要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Introduction 1
1-1 Developments in Gate Dielectric 1
1-2 Properties of TiO2 3
1-3 Comparison of deposition methods of TiO2 4
1-4 Advantages of ALD 5
1-5 Drawback of TiO2 for MOSFETs 6
1-6 Mechanism and the structure model of InP and GaAs with sulfur treatment 7
1-7 ALD Al2O3/TiO2 on (NH4)2S treated III-V compound semiconductor structure 9
1-8 Mechanism of Transmission Line Model 10
Experiments 20
2-1 Titanium oxide and Aluminum oxide are prepared by MOCVD and ALD 20
2-1-1 CVD theorem 20
2-1-2 Deposition system of MOCVD and ALD 21
2-1-3 Properties of source materials 23
2-2 Deposition procedures of MOS structure 24
2-2-1 GaAs and InP wafer cleaning and sulfidation procedures 24
2-2-2 InGaAs wafer cleaning and sulfidation procedures…..………...25
2-2-3 Preparation of Al2O3/TiO2 stack films 26
2-2-3-1 Growth parameters of ALD-TiO2 film 26
2-2-3-2 Growth parameters of ALD-Al2O3 film 26
2-2-4 Aluminum metal and In-Zn alloy cleaning processes 27
2-2-5 Electrodes fabrication 27
2-3 Characterization 27
2-3-1 Physical Properties 27
2-3-2 Electrical Properties 28
Characterization 34
3-1 Characterization of ALD Al2O3/TiO2 film on InP 34
3-1-1 TEM cross section of Al2O3/TiO2/S-InP structures 34
3-1-2 I-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 34
3-1-3 C-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 35
3-2 Characterization of ALD TiO2/Al2O3 film on GaAs 37
3-2-1 TEM cross section of TiO2/Al2O3/S-GaAs structures 37
3-2-2 I-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated GaAs 37
3-2-3 C-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated GaAs 38
3-3 Characterization of ALD TiO2/Al2O3 film on InGaAs 40
3-3-1 TEM cross section of TiO2/Al2O3/S-InGaAs structures 40
3-3-2 I-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated InGaAs 40
3-3-3 C-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated InGaAs 41
3-4 Conclusion 42
Enhancement-mode n-channel MOSFET 51
4-1 Fabrication process of enhancement-mode n-channel MOSFET 51
4-2 Electrical characteristics of enhancement-mode MOSFET 52
4-2-1 Electrical characteristics of enhancement-mode MOSFET with ALD-Al2O3/ALD-TiO2 as gate oxide on S-InP 52
4-2-2 Electrical characteristics of enhancement-mode MOSFET with ALD-TiO2/ALD-Al2O3 as gate oxide on S-GaAs 54
4-2-3 Electrical characteristics of enhancement-mode MOSFET with ALD-TiO2/ALD-Al2O3 as gate oxide on S-InGaAs 55
Conclusions 66
References 69

LIST OF FIGURES
Figure 1-1 The Moore's Law 12
Figure 1-2 Basic characteristics of high-k dielectrics 12
Figure 1-3 Crystal structures of TiO2 (a) Rutile, (b) Anatase, and (c) Brookite 13
Figure 1-4 The mechanism of ALD growth 16
Figure 1-5 Schematic views of the proposed structure models for the InP(001):S surface: a)~d) sulfur-rich structure and e), f) sulfur- poor structures 17
Figure 1-6 (1) Srivastava structure, (2) Inverse Srivastava structure, (3) Pashley structure and (4) Inverse Pashley structure 18
Figure 1-7 Three-dimensional atomic structures of GaAs surface before and after (NH4)2S treatment 19
Figure 2-1 Steps involved in a CVD processes 30
Figure 2-2 MOCVD system 30
Figure 2-3 Schematic growth system of ALD 31
Figure 2-4 Vapor pressure curve of Ti(i-OC3H7)4 31
Figure 2-5 The growth sequence 32
Figure 2-6 The structure for electrical measurement. 33
Figure 3-1 Image of HR-TEM of 3 nm Al2O3 and 5 nm TiO2 on S-InP 43
Figure 3-2 Leakage current densities of TiO2/InP, TiO2/S-InP and Al2O3/TiO2/S-InP MOS structures 43
Figure 3-3 Capacitance–voltage characteristics of TiO2/InP, TiO2/S-InP, and Al2O3/TiO2/S-InP MOS structures. 44
Figure 3-4 Frequency dependent C-V characteristics. (a)TiO2/InP MOS structure, (b) TiO2/S-InP MOS structure, (c)Al2O3/TiO2/S-InP MOS structure 45
Figure 3-5 Image of HR-TEM of 5 nm TiO2 and 3 nm Al2O3 on S-GaAs 46
Figure 3-6 Leakage current densities of TiO2/GaAs, TiO2/S-GaAs and TiO2/Al2O3/ S-GaAs MOS structures 46
Figure 3-7 Capacitance–voltage characteristics of TiO2/GaAs, TiO2/S-GaAs and TiO2/Al2O3/ S-GaAs MOS structures. 47
Figure 3-8 Frequency dependent C-V characteristics. (a)TiO2/GaAs MOS structure, (b) TiO2/S-GaAs MOS structure, (c) TiO2/Al2O3/S- GaAs MOS structure 48
Figure 3-9 Image of HR-TEM of 5 nm TiO2 and 3 nm Al2O3 on S-InGaAs 49
Figure 3-10 Leakage current densities of TiO2/InGaAs, TiO2/S-InGaAs and TiO2/Al2O3/ S-InGaAs MOS structures 49
Figure 3-11 Capacitance–voltage characteristics of TiO2/InGaAs, TiO2/S-InGaAs and TiO2/Al2O3/S-InGaAs MOS structures. 50
Figure 4-1 Steps of MOSFET fabrication process 59
Figure 4-2 MOSFET top view 60
Figure 4-3 ID-VD of e-mode S-InP NMOSFET with ALD-Al2O3/ALD-TiO2 as gate oxides 61
Figure 4-4 ID-VG of e-mode S-InP NMOSFET with ALD-Al2O3/ALD-TiO2 as gate oxides` 61
Figure 4-5 gm as function of VG of e-mode S-InP NMOSFET with ALD-Al2O3/ALD-TiO2 as gate oxides 62
Figure 4-6 ID-VD of e-mode S-GaAs NMOSFET with ALD-TiO2/ALD-Al2O3 as gate oxides 62
Figure 4-7 ID-VG of e-mode S-GaAs NMOSFET with ALD-TiO2/ALD-Al2O3 as gate oxides 63
Figure 4-8 gm as function of VG of e-mode S-GaAs NMOSFET with ALD-TiO2/Al2O3 as gate oxides 63
Figure 4-9 ID-VD of e-mode S-InGaAs NMOSFET with ALD-TiO2/ALD-Al2O3 as gate oxides 64
Figure 4-10 ID-VG of e-mode S-InGaAs NMOSFET with ALD-TiO2/ALD-Al2O3 as gate oxides 64
Figure 4-11 gm as function of VG of e-mode S-InGaAs NMOSFET with ALD-TiO2/ALD-Al2O3 as gate oxides 65


LIST OF TABLES
Table 1-1 Comparison of crystal structures of TiO2 14
Table 1-2 Comparison of deposition methods of TiO2 15
Table 2-1 Bond energies of various gaseous molecules with N or O atoms 32
Table 2-2 The growth process of ALD-TiO2 films 33
參考文獻 References
[1] http://www.intel.com/technology/mooreslaw/
[2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001.
[4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp.1838-1849, 2001.
[5] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001.
[6] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002.
[7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[8] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973.
[9] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[10] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[11] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and
MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90,
pp.5896-5900, 1986.
[12] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of
SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[14] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[15] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[16] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and
M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar
optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[17] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[18] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium dioxide rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032,1995.
[19] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “ Effects of Thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[20] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[22] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[23] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[24] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[25] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[26] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[27] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[28] R. D. Shannon, and J. A. Pask,” Kinetics of the Anatase-Rutile Transformation” , J. Am. Ceram. Soc., vol. 48, p. 391,1965.
[29] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[30] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[31] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[32] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[33] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[34] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[35] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[36] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[37] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[38] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat.Technol., vol. 155, pp. 141-145, 2002.
[39] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[40] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[41] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[42] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[43] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[44] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[45] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[46] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.47-51,2001
[47] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[48] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[49] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[50] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[51] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[52] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[53] T. Suntola, Mater.” Atomic layer epitaxy” , Sci. Rep. 4, 261 (1989).
[54] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[55] M. Leskela¨, M. Ritala,” Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409, 138 (2002)
[56] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[57] M. Ritala, K. Kukli, A. Rahtu, et al. ,” Atomic layer deposition (ALD): from precursors to thin film structures ”, Science 288 (2000) 319.
[58] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[61] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, “Extremely low temperature formation of silicondioxide on gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
[62] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP(100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992.
[63] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495, pp. 55-67, 2001.
[64] M. K. Lee, C. F. Yen, and S. H. Lin, “Electrical Improvements of MOCVD-TiO2 on (NH4)2Sx-Treated InP with Postmetallization Annealing,” J. Electrochem. Soc., vol. 154, no. 10, pp. G229-G233, Aug. 2007.
[65] Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng and A. Lochtefeld, “Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 91, no. 2, pp. 022108-022108-3, July. 2007.
[66] Y. Hwang, R. E. Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Appl. Phys. Lett., vol. 96, no. 10, pp. 102910-102910-3, Mar. 2010.
[67] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Tran. Electron Devices, vol. 44, no. 1, pp. 104-109, Jan. 1997.
[68] Steven M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, Jan. 2010.
[73] T. Gougousi and J. W. Lacis, “Native oxide consumption during the atomic layer deposition of TiO2 films on GaAs (100) surfaces,” Thin Solid Films, vol. 518, no. 8, pp. 2006-2009, Aug. 2010.
[69] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 8, pp. 1099-1101, Dec. 1996.
[70] R. Iyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988.
[71] D. N. Gnoth, D. Wolfframm, A. Patchett, S. Hohenecker, D. R. T. Zahn, A. Leslie, I. T. McGovern, and D. A. Evans, “A comparison of S-passivation of III-V(001) surfaces using (NH4)2Sx and S2C12,” Appl. Surf. Sci., vol. 123-124, pp. 120-125, Jan. 1998.
[72] Z. L. Yuan, X. M. Ding, B. Lai, and X. Y. Hou, E. D. Lu, P. S. Xu, and X. Y. Zhang, “Neutralized (NH4)2S solution passivation of III–V phosphide surfaces,” Appl. Phys. Lett., vol. 73, no 20, pp. 2977-2979, Nov. 1998.
[73] H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, “Low-temperature InP/GaAs wafer bonding using sulfide-treated surface,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061104-061104-3, Feb. 2006.
[74] Shinya Morikita, Tomoyuki Motegi and Hideaki Ikoma , “Improved Electrical Characteristics of Al2O3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing,” Jpn. J. Appl. Phys. vol. 38, no. 12B, pp. L1512-L1514, Dec. 1999.
[75] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee,” Effects of fluorine incorporation into HfO2 gate dielectrics on InP and In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett.,96, 253502 (2010).
[76] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys,” 23rd International Conference on IPRM 2011.
[77] A. Paccagnella, A. Callegari, J. Batey, and D. Lacey, “Properties and thermal stability of the SiO2/GaAs interface with different surface treatments,” J. Appl. Phys., vol. 57, pp. 258–260, 1990.
[78] A. Callegari, D. K. Sadana, D. A, Buchana, A. Paccagnella, E. D. Marshall, M. A. Tischler, and M. Norcoft, “Properties of SiO2/Si/GaAs structures formed by solid phase epitaxy of amorphous Si on GaAs,” Appl. Phys. Lett., vol. 58, pp. 2540-2542, 1991.
[79] X. Liu, X. Y. Chen, J. Yin, Z. G. Liu, J. M. Liu, X. B. Yin, G. X. Chen, and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed laser deposition on GaAs(100) substrates,” J. Vac. Sci. Technol. A, vol. 19, pp. 391-393, 2001.
[80] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
[81] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 8, Wiley, New York, (1981) [80] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
[82] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[83] M. Heiblum, M. I. Nathan, and C. A. Chang, “Characteristics of AuGeNi ohmic contacts to GaAs,” Solid-State Electron., vol. 25, pp. 185–195, Mar. 1982
[84] O. Aina,W. Katz, B. J. Baliga, and K. Rose, “Low-temperature sintered AuGe/GsaAs ohmic contact,” J. Appl. Phys., vol. 53, pp. 777–780, Jan. 1982.
[85] S. Wu, D. Wang, and K. Heime, “An improved model to explain ohmic contact resistance of n-GaAs and other semiconductors,” Solid-State Electron., vol. 29, pp. 489–494, May. 1986.
[86] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., pp. 512, 2000.

[87] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[88] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[89] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient
on the electrical-properties of TiO2 thin-film by metalorganic
chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[90] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface
control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),”
Thin Solid Film, vol. 377, pp. 766-771, 2000.
[91] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J.
Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[92] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67,1998.
[93] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin film by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[94] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon (100),” Thin Solid Film, vol. 377, pp.766-771, 2000.
[95] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[96] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[97] Yukinobu Shinoda and Takeshi Kobayashi, “Anomalous inversion channel formation in enhancement-mode InP metal-insulator semiconductor field effect transistors,” J. Appl. Phys., vol. 53, no. 10, pp.7033-7038, Oct. 1982.
[98] Y. T. Chen, H. Zhao, J. H. Yum, Y. Wang, and Jack C. Lee, “Metaloxide-
semiconductor field-effect-transistors on indium phosphide using HfO2 and silicon passivation layer with equivalent oxide thickness of 18 Å,” Appl. Phys. Lett., vol. 94, no. 21, pp. 213505- 213505-3, May 2009.
[99]. K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken and H. Maes, “ Impact of weak Fermi-level pinning on the correct interpretation of III-V MOS C-V and G-V characteristics,” Microelectronic Engineering, vol. 84, no.9-10, pp. 2146-2149, May 2007.
[100]. Y. T. Chen, H. Zhao, J. H. Yum, Y. Wang, and J. C. Lee, Appl. Phys. Lett. 94, 213505 (2009).
[101]. H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, E. Garfunkel, and T. Gustafsson, Phys. Status Solidi C 7, 260 (2010).
[102] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[103] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion-mode GaAs MOSFET with a selective oxidation process by using metal as the mask,” IEEE Electron Device Lett., vol. 22, pp. 2-4, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.251.155
論文開放下載的時間是 校外不公開

Your IP address is 3.149.251.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code