Responsive image
博碩士論文 etd-0726117-110505 詳細資訊
Title page for etd-0726117-110505
論文名稱
Title
發展阻斷式生物凝膠基質及緩衝膠體基質處理未飽和及飽和層之DNAPL污染
Development of blocked bio-gel substrate and buffered colloidal substrate to remediate DNAPL contaminated unsaturated and saturated zones
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-03-08
繳交日期
Date of Submission
2017-08-26
關鍵字
Keywords
飽和層、阻斷式生物凝膠基質、未飽和層、現地生物復育、緩衝膠體基質
saponification, unsaturated zone, saturated zone, buffered colloidal substrate, dense non-aqueous phase liquid, blocked bio-gel substrate
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
三氯乙烯(trichloroethylene, TCE)為地底下之廣泛污染物,目前我國TCE污染場址已經有22處被列管為整治場址(土壤及地下水污染整治網, 2015),TCE具有高的密度(1.46 g/mL)和低水溶性(1,100 mg/L)之特質,因此是屬於長期性的工作。現地生物復育(in situ bioremediation, ISB)是較為經濟可行的整治方式,惟生物降解需長期注入基質刺激微生物的生長及發展,促進還原脫氯反應(reductive dechlorination),因此整治區經常選擇緩慢釋放有機基質,但基質之注入常造成阻塞及地下水酸化問題,使得基質之傳輸效果不佳,並影響地下水水質惡化。此外,有機基質在未飽和層中無法長時間停由於土壤層中,使得微生物生長有限,並無法與污染物接觸並降解,因此未飽和層無法達到整治成效。本研究將於土壤及地下水分別發展出適用於土壤層之阻斷式生物凝膠基質(blocked bio-gel substrate, BBS)及適用於地下水層緩衝膠體基質(buffered colloidal substrate, BCS)。本研究已開發出BBS,其界達電位為負值且表面具有網狀立體節構,能緩慢吸附污染物;由試驗結果得知BBS可讓營養素有效地附著於未飽和層中,並能長期提供碳源及營養物質供微生物利用,進而增加還原脫氯效果,使該微生物去除1,2-二氯乙烷,因此BBS適用作為未飽和土壤層之阻斷式生物凝膠基質,除可阻斷及侷限DNAPL之擴散和下滲外,亦可緩釋基質以加強未飽和層DNAPL之生物降解。另外本研究已研發出BCS,經批次試驗結果得知,其除了作為電子提供者促進生物降解外,希望可長期提供緩慢釋放鹼度提供飽和層地下水緩衝能力,維持最適生物反應之pH值(中性),使地下水環境維持適合現地微生物生長之環境,並提升污染物降解效率。本研究於土壤及地下水分別發展出適用於土壤層之BBS及適用於地下水層之BCS,並且形成生物侷限及整治牆概念作污染源及邊界控制外,亦可達到風險管控之目的,使阻斷式生物凝膠基質及緩衝膠體基質成為一種更具經濟效益且突破傳統設計框架之綠色整治工法,符合現地、生物、被動之永續式綠色整治設計概念。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites are contaminated by halogenated organic compounds that were released into the environment. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. In this study, TCE will be used as the target compound for the feasibility and pilot-scale studies. One cost-effective approach for the remediation of the chlorinated-solvent contaminated aquifers is the installation of permeable reactive zones or barriers within aquifers. As contaminated groundwater moves through the emplaced reactive zones, the contaminants are removed, and uncontaminated groundwater emerges from the downgradient side of the reactive zones. Application of in situ anaerobic bioremediation is a feasible technology to remediate DNAPL site. However, enhanced in situ bioremediation requires the injection of primary substrates, which would cause the acidification and odor problems of the subsurface environment. This would deteriorate the groundwater quality and cause the increase in maintenance cost. The objective of this proposed study is to develop a blocked bio-gel substrate (BBS) and buffered colloid substrate (BCS) to bioremediate unsaturated and saturated zones contaminated with DNAPL, respectively. The BBS can contain and encapsulate the DNAPL in the unsaturated zone and prevent its further migration. The released substrate from the gel can enhance the reductive dechlorination of DNAPL in the unsaturated zone. The BCS can be applied in the saturated zone, which can release substrate from the colloid to enhance the reductive dechlorination of DNAPL in the saturated zone. Furthermore, the buffered colloid has the capability for pH control and prevents the decrease in pH value in groundwater. During the first-year research period, the unique BBS and BCS will be developed and the saponification will be studied. The BBS will contain slow carbon-releasing materials and biological gel to form a gel-like material. We will conduct the batch experiments to test the produced gel. The saponification test results would help on the design of a buffered colloid for pH control. The BCS has the capability for pH control and long-term substrate release. Several experimental conditions include the concentrations of contaminants and substrates, shacking speed, stability test, and percentage of each component will be tested. During the second calendar year, column experiments will be performed to evaluate the effectiveness of using the produced substrates as the primary substrates for DNAPL control and biodegradation. The possible TCE degradation byproducts will be also evaluated. During the third year of this proposed study, we will select a DNAPL-contaminated site to apply the designed substrates for field application. The results can be used to predict interactions and distribution of contaminant mass expected after substrate injection, and thus provides a more accurate estimate of the mass of DNAPL removed due to enhanced biodegradation. In this third calendar year, we will apply the Metagenomics technique and real-time polymerase chain reaction (PCR) to analyze the microbial diversity to obtain the metabolic routes of TCE biodegradation. Results of this study will aid in designing an in situ biobarrier system containing slowly released biocolloid for remedial application. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate chlorinated-solvent contaminated aquifers. Knowledge obtained from this study will aid in designing a reactive barrier system containing inhibitive biological gel substrate and buffered colloid substrate for site remediation.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
謝 誌 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1土壤及地下水受含氯脂肪族碳氫化物污染之近況 3
2.1.1 含氯脂肪族碳氫化物污染概述 3
2.1.2含氯脂肪族碳氫化物之性質及管制標準 6
2.1.3 含氯脂肪組碳氫化合物之傳輸 9
2.2常見的土壤與地下水污染整治技術 13
2.2.1 土壤與地下水生物整治技術 14
2.2.2 綠色整治技術 20
2.3 含氯碳氫化合物生物反應機制 22
2.3.1 含氯脂肪族碳氫化物好氧共代謝反應機制 22
2.3.2 含氯脂肪族碳氫化物厭氧還原脫氯反應機制 25
2.4 新穎土壤未飽和層與地下水飽和層生物整治技術 27
2.4.1 土壤阻斷式生物基質操縱技術 27
2.4.2 地下水緩衝膠體基質控制技術 31
2.5 分子生物技術運用於土壤與地下水整治 35
2.5.1 微生物多樣性之檢測方法 36
2.5.2 以即時定量PCR監測脫氯菌種與基因 37
第三章 實驗材料與方法 40
3.1 研究流程 40
3.2 實驗材料 42
3.2.1實驗藥品 42
3.2.2 實驗設備 42
3.3 阻斷式生物凝膠基質 43
3.3.1最佳合成配比與穩定性 43
3.3.2侷限試驗 43
3.3.3阻斷式生物凝膠基質分解實驗 43
3.4 緩衝膠體基質 43
3.4.1 緩衝膠體基質基本性質試驗 43
3.4.2緩衝膠體基質厭氧批次降解實驗 44
3.4.3現地模場試驗 46
3.5 實驗分析方法 47
3.5.1 水質分析 47
3.5.2 掃描式電子顯微鏡(SEM) 47
3.5.3 分子生物技術 48
第四章 結果與討論 54
4.1 阻斷式生物基質之基本性質 54
4.1.1阻斷式生物凝膠基質之合成 54
4.1.2 最佳合成配比及穩定性試驗 54
4.1.3侷限試驗 55
4.2 微生態系統阻斷式生物基質批次分解實驗 58
4.2.1 阻斷式生物凝膠基質/水對1,2-DCA之分配係數 58
4.2.2 BBS對於1,2-DCA之去除效率試驗 59
4.2.3 污染物吸附試驗 60
4.2.4 污染土阻絕試驗 63
4.2.5 環境掃描式電子顯微鏡觀察BBS 64
4.3 緩衝膠體基質之基本性質 66
4.3.1緩衝膠體基質之合成 66
4.3.2乳化試驗 66
4.3.3 穩定性試驗 68
4.4 微生態系統緩衝膠體基質批次生物降解實驗 70
4.4.1水質參數變化趨勢 70
4.4.2化學參數變化之趨勢 72
4.4.3污染物變化趨勢 75
4.4.4 土壤表面外觀 76
4.5 分子生物技術 77
4.5.1微生物菌相分析(DGGE) 77
4.5.2批次實驗之微生物菌種鑑定 80
4.5.3脫氯菌之菌量趨勢變化 89
4.5.4還原脫鹵酶基因數量變化趨勢 90
4.6模場試驗 92
4.6.1 DO、pH與ORP 93
4.6.2厭氧環境下的地下水化學參數變化 96
4.6.3三氯乙烯及副產物之降解趨勢 100
4.7模場分子生物技術分析 103
4.7.1 Dehalococcoides spp.菌屬數量變化趨勢 103
4.7.2還原脫鹵酶基因數量變化趨勢 104
4.7.3微生物菌相分析 107
4.7.4定序 110
4.8基質成本效益評估 112
第五章 結論與建議 114
5.1結論 114
5.2建議 115
參考文獻 116
參考文獻 References
Adamson, D.T., McDade, J.M., Hughes, J.B. (2003). Inoculation of DNAPL source zone to initiate reductive dechlorination of PCE. Environmental science & technology, 37(11), 2525-2533.
Agarry, S.E., Oghenejoboh, K.M. (2014). Biodegradation of Bitumen in Soil and Its Enhancement by Inorganic Fertilizer and Oxygen Release Compound: Experimental Analysis and Kinetic Modelling. Journal of Microbial & Biochemical Technology, 2014.
Alpaslan Kocamemi, B., Çeçen, F. (2009). Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying biofilm reactor. International Biodeterioration & Biodegradation, 63(6), 717-726.
Alvarez-Cohen, L. and Speitel, G.E. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12(2), 105-126.
Alvarez-Zaldívar, P., Centler, F., Maier, U., Thullner, M., Imfeld, G. (2016). Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland. Ecological Engineering, 90, 170-179.
Amann, R.I., Ludwig, W., Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 59(1), 143-169.
Amos, B.K., Suchomel, E.J., Pennell, K.D., Löffler, F.E. (2009). Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution. Environmental science & technology, 43(6), 1977-1985.
Angelucci, D. M., Tomei, M.C. (2015). Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction. Journal of environmental management, 159, 169-177.
Arp, D.J., Yeager, C.M., Hyman, M.R. (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation, 12(2), 81-103.
Atashgahi, S., Maphosa, F., De Vrieze, J., Haest, P.J., Boon, N., Smidt, H., Springael. D., Dejonghe, W. (2014). Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons. Applied microbiology and biotechnology, 98(5), 2255-2266.
Aulenta, F., Majone, M., Tandoi, V. (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81(9), 1463-1474.
Aulenta, F., Majone, M., Verbo, P., Tandoi, V. (2002). Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation, 13(6), 411-424.
Aulenta, F., Pera, A., Rossetti, S., Papini, M.P., Majone, M. (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41(1), 27-38.
Azizian, M.F., Istok, J.D., Semprini, L. (2007) Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests. Journal of contaminant hydrology, 90(1), 105-124.
Baek, K., Mao, X., Ciblak, A., Alshawabkeh, A. N. (2012). Green Remediation of Soil and Groundwater by Electrochemical Methods. In GeoCongress 2012@ sState of the Art and Practice in Geotechnical Engineering, 4348-4357, ASCE.
Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., (2011). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME journal, 6(2), 248-258.
Bennett, P., He, F., Zhao, D.Y., Aiken, B., Feldman, L. (2010). In-situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116(1–4), 35–46.
Bezbaruah, A.N., Krajangpan, S., Chisholm, B.J., Khan, E., Bermudez, J.J. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166(2–3), 1339–1343.
Bhatt, P., Kumar, M. S., Mudliar, S., Chakrabarti, T. (2007) Biodegradation of chlorinated compounds - A review, Crit. Rev. Environ. Sci. Technol., 37(2), 165-198.
Borden, R.C. (2007). Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. Journal of Contaminant Hydrology, 94(1), 1-12.
Borden, R.C., Raleigh, N.C. (2011). In situ pH adjustment for solid and publication groundwater remediation. United States Patent Application Publication, Pub. NO.: US2011/0139695 A1.
Borden, R.C., Rodriguez, B.X. (2006). Evaluation of slow release substrates foranaerobic bioremediation. Bioremediation Journal, 10, 59-69.
Bozinovski, D., Taubert, M., Kleinsteuber, S., Richnow, H.H., von Bergen, M., Vogt, C., Seifert, J. (2014). Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Systematic and applied microbiology, 37, 488-501.
Cabirol, N., Jacob, F., Perrier, J., Fouillet, B., Chambon, P. (1998). Interaction between methanogenic and sulfate-reducing microorganisms during dechlorination of a high concentration of tetrachloroethylene. Journal of General and Applied Microbiology, 44, 297-301.
Carrere, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenes, J.P., Steyer, J.P., Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of hazardous materials, 183(1), 1-15.
Cerqueira, V.S., Maria do Carmo, R.P., Camargo, F.A., Bento, F.M. (2014). Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. International Biodeterioration & Biodegradation, 95, 338-345.
Chaganti, S.R., Kim, D.H., Lalman, J.A. (2011). Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production. International Journal of Hydrogen Energy, 36(21), 14141-14152.
Chang, Y.C., Okeke, B.C., Hatsu, M., Takamizawa, K. (2001). In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Bioresource Technology, 78(2), 141-147.
Chen, M., Li, X. H., He, Y.H., Song, N., Cai, H.Y., Wang, C., Li, Y.T., Chu, H.Y., Krumholz, L.R., Jiang, H. L. (2016). Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Research, 96, 94-104.
Chen, Y.M., Lin, T.F., Huang, C., Lin, J. C., Hsieh, F.M. (2007). Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida, J. Hazard. Mater., 148(3), 660-670.
Chin, D.A. (2012). Water-quality Engineering in Natural Systems: Fate and Transport Processes in the Water Environment, Wiley. com.
Clayton, M.H., Borden, R.C. (2009). Numerical modeling of emulsified oil distribution in heterogeneous aquifers. Ground Water, 47(2), 246-258.
Cline, D.M., Jackson, P.J.W., Collins III., M.(2005). KOH Injections in Low-pH Aquifers to Enhance Anaerobic Degradation. In: Allerman, B. C. and M. E. Kelly (Conf. Chairs). Proceedings of the Eight International In Situ and On-Site Bioremediation Symposium (Baltimore, Md., Jun. 6-9, 2005). ISBN 1-57477-152-3, Battelle Press, Columbus, Ohio.
Clough, H., Stevens, M. (2007) In situ bioremediation of chlorinated solvents: a case study. in Paper H-27, Gavaskar, A. R. and Silver, C. F. (Symposium Chairs), In Situ and On-Site Bioremediation-2007. Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland).
Comba, S., Dalmazzo, D., Santagata, E., Sethi, R. (2011). Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. Journal of hazardous materials, 185(2), 598-605.
Cortis, A., Ghezzehei, T.A. (2007). On the transport of emulsions in porous media. Journal of colloid and interface science, 313(1), 1-4.
Crane, R.A., Scott, T.B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of hazardous materials,211, 112-125.
Cruz, I., Bashan, Y., Hernàndez-Carmona, G., de-Bashan, L.E. (2013). Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied microbiology and biotechnology, 1-12.
Dalla Vecchia, E., Luna, M., Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science Technology, 43(23), 8942–8947.
De Biase, C., Maier, U., Baeder‐Bederski, O., Bayer, P., Oswald, S.E., Thullner, M., (2012). Removal of volatile organic compounds in vertical flow filters: Predictions from reactive transport modeling. Ground Water Monitoring & Remediation, 32(2), 106-121.
Debruin, W.P., Kotterman, M.J.J., Posthumus, M.A., Schraa, G., Zehnder, A.J.B. (1992). Complete biological reductive transformation of tetrachloroethene to ethane. Applied and Environmental Microbiology, 58(6), 1996-2000.
Deutsch, W.J., Dooley, M., Koenigsberg, S., Butler, B., Dobbs, G. (2003). In situ redox manipulation for arsenic remediation. Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2002.
Dinglasan‐Panlilio, M.J., Dworatzek, S., Mabury, S., Edwards, E. (2006). Microbial oxidation of 1,2‐dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS microbiology ecology, 56(3), 355-364.
Dinglasan‐Panlilio, M.J., Dworatzek, S., Mabury, S., Edwards, E. (2006). Microbial oxidation of 1,2‐dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS microbiology ecology, 56(3), 355-364.
Dong, H., Lo, I. M. C. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Research, 47(1), 419–427.
Duhamel, M., Edwards, E.A. (2006). Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiology Ecology, 58(3), 538-549.
Egli, C., Scholtz, R., Cook, A.M., Leisinger, T. (1987). Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiology Letters, 43(3), 257-261.
Estroff, L.A., Hamilton, A.D. (2004). Water gelation by small organic molecules. Chemical reviews, 104(3), 1201-1218.
Faisal, A.A.H., Ahmed, M.D. (2015). Removal of copper ions from contaminated groundwater using waste foundry sand as permeable reactive barrier. International Journal of Environmental Science and Technology, 12(8), 2613-2622.
Farhadian, M., Vachelard, C., Duchez, D., Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99(13), 5296-5308.
Felföldi, T., Székely, A.J., Gorál, R., Barkács, K., Scheirich, G., András, J., Márialigeti, K. (2010). Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresource technology, 101, 3406-3414.
Felföldi, T., Székely, A.J., Gorál, R., Barkács, K., Scheirich, G., András, J., Márialigeti, K. (2010). Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresource technology, 101, 3406-3414.
Fennell, D.E., Carroll, A.B., Gossett, J., M.Zinder, S.H. (2001). Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environmental science & technology, 35(9), 1830-1839.
Fletcher, K.E., Ritalahti, K.M., Pennell, K.D., Takamizawa, K., Loffler, F.E. (2008). Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Applied and Environmental Microbiology, 74(19), 6141-6143.
Flynn, T.M., O’Loughlin, E.J., Mishra, B., DiChristina, T.J., Kemner, K.M. (2014). Sulfur-mediated electron shuttling during bacterial iron reduction.Science, 344(6187), 1039-1042.
Fontanillo, M., Angulo-Pachón, C.A., Escuder, B., Miravet, J.F. (2013). In situ synthesis-gelation at room temperature vs. heating–cooling procedure. Fine tuning of molecular gels derived from succinic acid and L-valine. Journal of colloid and interface science, 412, 65-71.
Frascari, D., Pinelli, D., Nocentini, M., Zannoni, A., Fedi, S., Baleani, E., Zannoni, D., Farneti, A., Battistelli, A. (2006). Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses. Journal of hazardous materials, 138(1), 29-39.
Freedman, D.L., Gossett, J.M. (1989). Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. applied and Environmental Microbiology, 55(9), 2144-2151.
Futamata, H., Harayama, S. and Watanabe, K. (2001). Group-Specific Monitoring of Phenol Hydroxylase Genes for a Functional Assessment of Phenol-Stimulated Trichloroethylene Bioremediation. Applied and Environmental Microbiology, 67, 4671-4677.
Futamata, H., Harayama, S., Watanabe, K. (2001). Group-Specific Monitoring of Phenol Hydroxylase Genes for a Functional Assessment of Phenol-Stimulated Trichloroethylene Bioremediation. Applied and Environmental Microbiology, 67, 4671-4677.
Futamata, H., Nagano, Y., Watanabe, K., Hiraishi, A. (2005). Unique kinetic properties of phenol-degrading Variovoyax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Applied and Environmental Microbiology, 71(2), 904-911.
Futamata, H., Nagano, Y., Watanabe, K., Hiraishi, A. (2005). Unique kinetic properties of phenol-degrading Variovoyax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Applied and Environmental Microbiology, 71(2), 904-911.
Gastone, F., Tosco, T., Sethi, R. (2014). Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation. Journal of Colloid and Interface Science, 421, 33–43.
Gastone, F., Tosco, T., Sethi, R. (2014). Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation. Journal of colloid and interface science, 421, 33-43.
Gerritse, J., Renard, V., Gomes, T.M.P., Lawson, P.A., Collins, M.D., Gottschal, J.C. (1996). Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology, 165, 132-140.
Gihring, T.M., Zhang, G., Brandt, C.C., Brooks, S.C., Campbell, J.H., Carroll, S., Schadt, C.W. (2011). A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Applied and environmental microbiology, 77(17), 5955-5965.
Griebler, C., Lueders, T. (2009). Microbial biodiversity in groundwater ecosystems. Freshwater Biology, 54(4), 649-677.
Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D.V., Giannoukos, G., Birren, B.W., (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome research, 21(3), 494-504.
Halsey, K.H., Doughty, D.M., Sayavedra-Soto, L. A., Bottomley, P.J., Arp, D.J. (2007). Evidence for modified mechanisms of chloroethene oxidation in Pseudomonas butanovora mutants containing single amino acid substitutions in the hydroxylase alpha-subunit of butane monooxygenase. Journal of bacteriology, 189(14), 5068-5074.
Hamonts, K., Kuhn, T., Vos, J., Maesen, M., Kalka, H., Smidt, H., Dejonghe, W. (2012). Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume. Water research, 46(6), 1873-1888.
Hanaki, K., Nagase, M., Matsuo, T. (1981). Mechanism of inhibition caused by long-chain fatty acids in anaerobic digester process. Biotechnology and Bioengineering, 23(7), 1591-1610.
Harkness, M., Fisher, A. (2013). Use of Emulsified Vegetable Oil to Support Bioremediation of TCE DNAPL in Soil Columns. Journal of contaminant hydrology.
Hazen, T.C., Chakraborty, R., Fleming, J.M., Gregory, I.R., Bowman, J.P., Jimenez, L., Sayler, G.S. (2009). Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Archives of microbiology, 191(3), 221-232.
He, F., Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science Technology, 41, 6216–6221.
Hell, K., Edwards, A., Zarsky, J., Podmirseg, S.M., Girdwood, S., Pachebat, J.A., Sattler, B., (2013). The dynamic bacterial communities of a melting High Arctic glacier snowpack. The ISME journal, 7, 1814-1826.
Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E., Ebersole, R.C. (2002). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe. Applied and Environmental Microbiology, 68(2), 485-495.
Henry, B.M. (2010). Biostimulation for anaerobic bioremediation of chlorinated solvents. In Situ Remediation of Chlorinated Solvent Plumes. Springer New York. 357-423.
Hermans, P. H. (1949). Physics and chemistry of cellulose fibers: with particular reference to rayon.
Hiortdahl, K.M. (2012). Enhanced Anaerobic Bioremediation of Tetrachloroethene Dense Non-Aqueous Phase Liquids in Column Studies. North Carolina State University Environmental Engineering.
Hiortdahl, K.M., Borden, R.C. (2013). Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. Environmental science & technology, 48, 624-631.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G., Sherwood, L. B. (2007). Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environmental microbiology, 9, 1651-1657.
Hunkeler, D., Aravena, R. (2000). Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2-dichloroethane by Xanthobacter autotrophicus. Applied and Environmental Microbiology, 66(11), 4870-4876.
Hunkeler, D., Aravena, R., Berry-Spark, K., Cox, E. (2005).Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environmental science & technology, 39(16), 5975-5981.
Isalou, M., Sleep, B.E., Liss, S.N. (1998). Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environmental science & technology, 32(22), 3579-3585.
Ishida, H., Nakamura, K. (2000). Trichloroethylene degradation by Ralstonia sp KN1-10A constitutively expressing phenol hydroxylase: Transformation products, NADH limitation, and product toxicity. Journal of Bioscience and Bioengineering, 89(5), 438-445.
ITRC (The Interstate Technology & Regulatory Council) (2008). In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones.
Jennings, L.K., Giddings, C.G., Gossett, J.M. Spain, J.C., (2013). Bioaugmentation for Aerobic Degradation of CIS-1,2-Dichloroethene. Bioaugmentation for Groundwater Remediation, 199-217.
Jeon, J. R., Murugesan, K., Baldrian, P., Schmidt, S., Chang, Y. S. (2016). Aerobic bacterial catabolism of persistent organic pollutants—potential impact of biotic and abiotic interaction. Current opinion in biotechnology, 38, 71-78.
Jesser, K.J., Fullerton, H., Hager, K.W., Moyer, C.L. (2015). Quantitative PCR Analysis of Functional Genes in Iron-Rich Microbial Mats at an Active Hydrothermal Vent System (Lō'ihi Seamount, Hawai'i). Applied and environmental microbiology, 81(9), 2976-2984.
Juhas, M., Der Meer, V., Roelof, J., Gaillard, M., Harding, R. M., Hood, D.W., Crook, D.W., (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS microbiology reviews, 33(2), 376-393.
Kageyama, C., Ohta, T., Hiraoka, K., Suzuki, M., Okamoto, T., Ohishi, K. (2005). Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. Archives of microbiology, 183(1), 56-65.
Kao, C.M., Lei, S.E. (2000). Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water research, 34(3), pp.835-845.
Kao, C.M., Liao, H.Y., Chien, C.C., Tseng, Y.K., Tang, P., Lin, C.E., Chen, S.C. (2016). The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of hazardous materials, 302, 144-150.
Kao, C.M., Prosser, J. (1999). Inrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. Journal of Hazardous Materials, 69, 67-79.
Khachatoorian, R., Petrisor, I.G., Kwan, C.C., Yen, T.F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38(1), 13-21.
Kim, Y., Istok, J.D., Semprini, L. (2008). Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene. Chemosphere, 71(9), 1654-1664.
Kimble, G.H., Hill, V.R., Amburgey, J.E. (2015). Evaluation of alternative DNA extraction processes and real-time PCR for detecting Cryptosporidium parvum in drinking water.
Kocur, C.M., O'Carroll, D.M., Sleep, B.E. (2013). Impact of nZVI stability on mobility in porous media. Journal of contaminant hydrology, 145, 17-25.
Krol, M.M., Oleniuk, A.J., Kocur, C.M., Sleep, B.E., Bennett, P.,Xiong, P.Z., O’Carroll, D.M. (2013). A field-validated model for in-situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science Technology, 47(13), 7332–7340.
Kunukcu, Y.K. (2007). In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs). Journal of Environmental Science and Health Part A, 42(7), 839-845.
Kuo, Y.C., Cheng, S.F., Liu, P.W.G., Chiou, H.Y., Kao, C.M., (2012). Application of enhanced bioremediation for TCE-contaminated groundwater: a pilot-scale study. Desalination and Water Treatment, 41(1-3), 364-371.
Kuo, Y.C., Wang, S.Y., Chang, Y.M., Chen, S.H., Kao, C.M. (2014). Control of trichloroethylene plume migration using a biobarrier system: a field-scale study. Water Science & Technology, 69(10), 2074-2078.
Kwon, K., Shim, H., Bae, W., Oh, J., Bae, J. (2016). Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier. Journal of Hazardous Materials, 313, 60-67.
Kwon, T.S., Yang, J.S., Baek, K., Lee, J.Y., Yang, J.W. (2006). Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 136(3), 610-617.
Kwon, T.S., Yang, J.S., Baek, K., Lee, J.Y., Yang, J.W. (2006). Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 136(3), 610-617.
Lalande, J., Villemur, R., Deschênes, L. (2013). A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE. Microbial ecology, 1-12.
Le, N.B., Coleman, N.V. (2011). Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation, 22(6), 1095-1108.
Lee, M.H., Clingenpeel, S.C., Leiser, O.P., Wymore, R.A., Sorenson, K.S., Watwood, M.E. (2008). Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution,153(1), 238-246.
Lee, P.K., Cheng, D., West, K.A., Alvarez‐Cohen, L., He, J. (2013). Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environmental microbiology.
Lee, S.S., Kaown, D., Lee, K.K. (2015). Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea. Journal of contaminant hydrology, 182, 231-243.
Lee, W., Batchelor, B. (2002). Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environmental Science & Technology, 36(23), 5147-5154.
Leenders, C.M., Mes, T., Baker, M.B., Koenigs, M.M., Besenius, P., Palmans, A.R., Meijer, E.W. (2014). From supramolecular polymers to hydrogel materials. Materials Horizons.
Lerner, D.N., Kueper, B.H., Wealthall, G.P., Smith, J.W.N., Leharne, S.A. (2003). An illustrated handbook of DNAPL transport and fate in the subsurface. Environment Agency, 1-63.
Li, H., Shen, T.T., Wang, X.L., Lin, K.F., Liu, Y.D., Lu, S.G., Du, X.M. (2013). Biodegradation of perchloroethylene and chlorophenol co-contamination and toxic effect on activated sludge performance. Bioresource technology, 137, 286-293.
Li, W., Chen, L., Su, Y., Yin, H., Pang, Y., Zhuang, Z. (2015). 1,2-Dichloroethane induced nephrotoxicity through ROS mediated apoptosis in vitro and in vivo. Toxicology Research, 4(5), 1389-1399.
Liang, C., Hsieh, C.L. (2015). Evaluation of surfactant flushing for remediating EDC-tar contamination. Journal of contaminant hydrology, 177, 158-166.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M. (2013). Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. Journal of hazardous materials, 254, 107-115.
Lindow, N.L., Borden, R.C. (2005). Anaerobic bioremediation of acid mine drainage using emulsified soybean oil. Mine Water and the Environment, 24, 199-208.
Löffler, F.E., Ritalahti, K.M., Zinder, S.H., (2013). Dehalococcoides and reductive dechlorination of chlorinated solvents. Bioaugmentation for Groundwater Remediation, 39-88. Springer New York.
Löffler, F.E., Sun, Q., Li, J., Tiedje, J.M. (2000). 16S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas and Dehalococcoides Species. Applied and Environmental Microbiology, 66(4), 1369-1374.
Long, C.M., Borden, R.C. (2006). Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of contaminant hydrology, 87(1), 54-72.
Luna, M., Gastone, F., Tosco, T., Sethi, R., Velimirovic, M., Gemoets, J., Bastiaens, L. (2015). Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Journal of contaminant hydrology, 181, 46-58.
Lutes, C.C., Frizzell, A., Suthersan, S.S. (2006). Enhanced Reductive Dechlorination of CAHs using Soluble Carbohydratesi A Summary of Detailed Data from 50 Sites. In: Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Appendix E. AFCEE/NFESC/ESTCP, Brooks City-Base, TX. August 2004.
Ma, Q., Zhong, Q. (2015). Incorporation of soybean oil improves the dilutability of essential oil microemulsions. Food Research International, 71, 118-125.
Mahadevan, R., Palsson, B.Ø., Lovley, D.R. (2010). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 9(1), 39-50.
Marks, C. (2011). Comparison of EHC, EOS, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass, E2S2: Environment, Energy Security and Sustainability Symposium and Exhibition, 9-12 May 2011, New Orleans, Louisiana. Presentation 12621, 30 slides, https://www.clu-in.org/download/contaminantfocus/dnapl/Treatment_Technologies/12621.pdf.
Marzorati, M., Balloi, A., Ferra, F., Corallo, L., Carpani, G., Wittebolle, L., Daffonchio, D. (2010). Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer. Microbial cell factories, 9(1), 1.
Mattes, T.E., Jin, Y.O., Livermore, J., Pearl, M., Liu, X. (2015). Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Applied microbiology and biotechnology, 1-10.
Matturro, B., Rossetti, S. (2015). GeneCARD-FISH: Detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization. Journal of microbiological methods, 110, 27-32.
McClements, D.J., Decker, E.A., Weiss, J.. (2007). Emulsion‐based delivery systems for lipophilic bioactive components. Journal of Food Science, 72(8), R109-R124.
McLean, J.E., Ervin, J., Zhou, J., Sorensen, D.L., Dupont, R.R. (2015). Biostimulation and Bioaugmentation to Enhance Reductive Dechlorination of TCE in a Long‐Term Flow Through Column Study. Groundwater Monitoring & Remediation.
McMurdie, P.J., Behrens, S.F., Müller, J.A., Göke, J., Ritalahti, K.M., Wagner, R., Spormann, A.M., (2009). Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS genetics, 5(11), e1000714.
Meckenstock, R.U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Dejonghe, W., Van Breukelen, B.M. (2015). Biodegradation: Updating the concepts of control for microbial clean-up in contaminated aquifers. Environmental science & technology.
Mendoza-Sanchez, I., Autenrieth, R.L., McDonald, T.J., Cunningham, J.A. (2010). Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments. Biodegradation, 21(3), 365-377.
Mera, N., Iwasaki, K. (2007). Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils. Applied and Environmental Microbiology, 77(2), 437-445.
Miller, T.R., Franklin, M.P., Halden, R.U. (2007). Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS microbiology ecology, 60(2), 299-311.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y., Noda, N. (2010). Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. Using alternately binding probe competitive polymerase chain reaction. Molecular and cellular probes, 24(3), 131-137.
Mundle, S.O., Johnson, T., Lacrampe-Couloume, G., Pérez-de-Mora, A., Duhamel, M., Edwards, E.A., Sherwood Lollar, B. (2012). Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA). Environmental science & technology, 46(3), 1731-1738.
Nadais, H., Barbosa, M., Capela, I., Arroja, L., Ramos, C.G., Grilo, A., Leitão, J.H., (2011). Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors. Energy, 36(4), 2164-2168.
Palatsi, J., Illa, J., Prenafeta-Boldú, F.X., Laureni, M., Fernandez, B., Angelidaki, I., Flotats, X. (2010). Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresource Technology, 101(7), 2243-2251.
Palleroni, N.J., Port, A.M., Chang, H.K., Zylstra, G.J. (2004). Hydrocarboniphaga effusa gen. nov., sp nov., a novel member of the gamma-Proteobacteria active in alkane and aromatic hydrocarbon degradation. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1203-1207.
Palleroni, N.J., Port, A.M., Chang, H.K., Zylstra, G.J. (2004). Hydrocarboniphaga effusa gen. nov., sp nov., a novel member of the gamma-Proteobacteria active in alkane and aromatic hydrocarbon degradation. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1203-1207.
Panagiotakis, I., Antoniou, K., Mamais, D., Pantazidou, M. (2015). Effects of Different Electron Donor Feeding Patterns on TCE Reductive Dechlorination Performance. Bulletin of environmental contamination and toxicology, 94(3), 289-294.
Pant, P., Pant, S. (2010) A review: Advances in microbial remediation of trichloroethylene (TCE), Journal of Environmental Sciences-China, 22(1), 116-126.
Papon, P., Leblond, J., Meijer, P.H.E. (2006).The physics of phase transitions: concepts and applications. Springer.
Paul, B.K., Moulik, S.P. (1997). Microemulsions: an overview. Journal of Dispersion science and Technology, 18(4), 301-367.
Pereira, M.A., Pires, O.C., Mota, M, Alves, M.M. (2005). Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnology and bioengineering, 92(1), 15-23.
Perelo, L.W. (2010). Review: in situ and bioremediation of organic pollutants in aquatic sediments. Journal of hazardous materials, 177(1), 81-89.
Pfeiffer, P., Bielefeldt, A. R., Illangasekare, T., Henry, B. (2005). Partitioning of dissolved chlorinated ethenes into vegetable oil. Water research, 39(18), 4521-4527.
Pfiffner, S.M., Palumbo, A.V., Sayles, G.D., Gannon, D. (2004). Microbial population and degradation activity changes monitored during a chlorinated solvent biovent demonstration. Groundwater Monitoring & Remediation, 24(3), 102-110.
Phenrat, T., Thongboot, T., Lowry, G.V. (2015). Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept. Environmental science & technology.
Phillips, D.H., Nooten, T.V., Bastiaens, L., Russell, M.I., Dickson, K., Plant, S., Kalin, R.M. (2010). Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environmental science & technology, 44(10), 3861-3869.
Piepenbrock, M.O.M., Lloyd, G.O., Clarke, N., Steed, J.W. (2009). Metal-and anion-binding supramolecular gels. Chemical reviews, 110(4), 1960-2004.
Pokrovsky, O.S. , Schott, J. (2004). Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochimica et Cosmochimica Acta, 68(1), 31-45.
Poulton, S.W., Krom, M.D., Van Rijn, J., Raiswell, R. (2002). The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems. Water research, 36, 825-834.
Prpich, G.P., Adams, R.L., Daugulis, A.J. (2006). Ex situ bioremediation of phenol contaminated soil using polymer beads. Biotechnology letters, 28(24), 2027-2031.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Weissenbach, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.
Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'Hara, S., Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental science & technology, 39(5), 1309-1318.
Rabus, R., Nordhaus, R., Ludwig, W., Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Applied and Environmental Microbiology, 59, 1444-1451.
Rajic, L., Nazari, R., Fallahpour, N., Alshawabkeh, A.N. (2016). Electrochemical degradation of trichloroethylene in aqueous solution by bipolar graphite electrodes. Journal of Environmental Chemical Engineering, 4, 197-202.
Ralston, A.W., Hoerr, C.W. (1942). The solubilities of the normal saturated fatty acids. Journal of Organic Chemistry, 7(6), 546-555.
Ray S., Chowdhury, N., Lalman, J.A., Seth, R., Biswas, N. (2008). Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture. Journal of Environmental Engineering-ASCE, 34, 110-117.
Revesz, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Meszaros, E., Mohr, A., Tancsics, A., Marialigeti, K. (2006). Bacterial community changes in TCE biodegradation detected in microcosm experiments. International Biodeterioration & Biodegradation, 58(3-4), 239-247.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S. Löffler, F.E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72(4), 2765-2774.
Robinson, C., Barry, D.A., McCarty, P. L., Gerhard, J. I., Kouznetsova, I. (2009). pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Science of the Total Environment, 407(16), 4560-4573.
Sawyer, C.N., McCarty, P.L., Parkin, G.F. (1994). Chemistry for Environmental Engineering. McGraw-Hill Inc.
Scheutz, C., Durant, N.D., Hansen, M.H., Bjerg, P.L. (2011). Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – a critical review. Water research, 45(9), 2701-2723.
Semprini, L. (2013). Bioaugmentation for the In situ Aerobic Cometabolism of Chlorinated Solvents. Bioaugmentation for Groundwater Remediation, 219-255.
Sevilla, M.A. R.T.A., Fuertes, A.B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281-2289.
Sheu, Y.T., Chen, S.C., Chien, C C., Chen, C.C., Kao, C.M. (2015). Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. Journal of hazardous materials, 284, 222-232.
Shoji, M., Isobe, H., Shen, J.R., Yamaguchi, K. (2016). Geometric and electronic structures of the synthetic Mn4CaO4 model compound mimicking the photosynthetic oxygen-evolving complex. Physical Chemistry Chemical Physics.
Smith, C.J., Osborn, A.M. (2009). Advantages and limitations of quantitative PCR (Q‐PCR)‐based approaches in microbial ecology. FEMS microbiology ecology, 67(1), 6-20.
Srivastava, S. (2015). Bioremediation Technology: A Greener and Sustainable Approach for Restoration of Environmental Pollution. Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer India, 1-18.
Stroo, H.F., West, M.R., Kueper, B.H., Borden, R.C., Major, D.W., Ward, C.H. (2014). IN SITU Bioremediation Of Chlorinated Ethene Source Zones. Chlorinated Solvent Source Zone Remediation. Springer New York, 395-457.
Suthersan, S.S., Lutes, C.C., Palmer, P.L., Lenzo, F., Payne, F.C., Liles, D.S., Burdick, J. (2002). Technical protocol for using soluble carbohydrates to enhance reductive dechlorination of chlorinated aliphatic hydrocarbons. ARCADIS GERAGHTY AND MILLER INC DURHAM NC.
Suttinun, O., Luepromchai, E., Müller, R. (2013). Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Reviews in Environmental Science and Bio/Technology, 12(1), 99-114.
Sutton, N.B., Atashgahi, S., Saccenti, E., Grotenhuis, T., Smidt, H., Rijnaarts, H.H. (2015). Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation. PloS one, 10(8), e0134615.
Takami, W., Horinouchi, M., Nojiri, H., Yamane, H. and Omori, T., (1999). “Evaluation of trichloroethylene degradation by E. coli transformed with dimethyl sulfide monooxygenase genes and/or cumene dioxygenase genes”, Biotechnology letters, 21, 259-264.
Tartakovsky, B., Manuel, M.E., Guiot, S.R. (2005). Degradation of trichloroethylene in a coupled anaerobic-aerobic bioreactor: Modeling and experiment, Biochemical Engineering Journal, 26(1), 72-81.
Thomé, A., Reddy, K.R., Reginatto, C., Cecchin, I. (2015). Review of Nanotechnology for Soil and Groundwater Remediation: Brazilian Perspectives. Water, Air, & Soil Pollution, 226(4), 1-20.
Tillotson, J.M. (2007). Laboratory Studies in Chlorinated Solvents and Hydrocarbon Bioremediation. M.S. Thesis: North Carolina State University.
Tiraferri, A., Chen, K. L., Sethi, R., Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324(1), 71–79.
Tomei, M.C., Daugulis, A. J. (2013). Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Critical reviews in environmental science and technology, 43(20), 2107-2139.
Tomei, M.C., Angelucci, D.M., Ademollo, N., Daugulis, A.J. (2015). Rapid and effective decontamination of chlorophenol-contaminated soil by sorption into commercial polymers: Concept demonstration and process modeling.Journal of environmental management, 150, 81-91.
Tosco, T., Papini, M.P., Viggi, C.C., Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 77, 10–21.
Tyagi, M., da Fonseca, M.M.R., de Carvalho, C.C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231-241.
Velimirovic, M., Simons, Q., Bastiaens, L. (2014). Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study. Journal of hazardous materials, 265, 20-29.
Viessman, W., Hammer, M.J. (2009). Water supply and pollution control. Pearson Prentice Hall.
Vogel, T.M., Criddle, C.S., McCarty, P.L. (1987). ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21, 722-736.
Volkering, F., Pijls, C. (2004). Factors Determining Reductive Dechlorination of cis-1,2-DCE at PCE Contaminated Sites. Proceedings of the Fourth International Conferenceon Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). Paper 3D-10. Columbus, OH: Battelle Press.
Wang, S.Y., Kuo, Y.C., Huang, Y.Z., Huang, C.W., Kao, C.M. (2015). Bioremediation of 1, 2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Environmental Pollution, 203, 97-106.
Wei, Y.T., Wu, S.C., Yang, S.W., Che, C H., Lien, H.L., Huang, D.H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of hazardous materials, 211, 373-380.
Wesseldyke, E.S., Becker, J.G., Seagren, E.A., Mayer, A.S., Zhang, C. (2015). Numerical modeling analysis of hydrodynamic and microbial controls on DNAPL pool dissolution and detoxification: Dehalorespirers in coculture. Advances in Water Resources, 78, 112-125.
Widdel, F. (1988). Microbiology and ecology of sulfate-and sulfur-reducing bacteria. Biology of Anaerobic Microorganisms., 469-585.
Woese, C.R. (1987). Bacterial evolution. Microbiological reviews, 51(2), 221.
Wooley, J.C., Godzik, A., Friedberg, I. (2010). A primer on metagenomics. PLoS computational biology, 6(2), e1000667.
Xue, D., Sethi, R. (2012). Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro-and nanoparticles. Journal of Nanoparticle Research, 14(11), 1-14.
Yagi, J.M., Sims, D., Brettin, T., Bruce, D., Madsen, E.L. (2009). The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar‐contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environmental microbiology, 11, 2253-2270.
Yang, Y.R., McCarty, P.L. (2000). Biologically enhanced dissolution of tetrachloroethene DNAPL. Environmental Science & Technology, 34(14), 2979-2984.
Yates, M.D., Kiely, P.D., Call, D.F., Rismani-Yazdi, H., Bibby, K., Peccia, J., Logan, B.E. (2012). Convergent development of anodic bacterial communities in microbial fuel cells. The ISME journal, 6(11), 2002-2013.
Yee, L., Hosoyama, A., Ohji, S., Tsuchikane, K., Shimodaira, J., Yamazoe, A., Fujitab, N., Suzuki-Minakuchia, C., Nojiri, H. (2014). Complete genome sequence of a dimethyl sulfide-utilizing bacterium. Acinetobacter guillouiae strain 20B (NBRC 110550).Genome announcements, 2(5), e01048-14.
Younger, P.L. (2009). Groundwater in the environment: an introduction. Wiley. com.
Zeeb, B., Saberi, A.H., Weiss, J., McClements, D.J. (2015). Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft matter, 11(11), 2228-2236.
Zhong, L., Truex, M.J., Kananizadeh, N., Li, Y., Lea, A.S., Yan, X. (2015). Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation. Journal of contaminant hydrology, 175, 17-25.
Zhou, J., Wandera, D., Husson, S.M. (2015). Mechanisms and control of fouling during ultrafiltration of high strength wastewater without pretreatment. Journal of Membrane Science, 488, 103-110.
Zhou, J., Xing, J. (2015). Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors.Biochemical Engineering Journal, 96, 14-22.
行政院環保署,(2016),土壤污染管制標準,環署土字第0970031435號令。
沈建宇,2006,利用以固定化三仙膠對水溶液中重金屬之生物吸附程序,中原大學化學工程研究所。
林怡雅,2005,探討生物聚醣三仙膠在生物吸附程序的應用,中原大學化學工程研究所。
張永宜,2007,乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所。
張為憲,李敏雄,呂政義,張永和,陳昭雄,孫璐西,陳怡宏,張基郁,顏國欽,林志城,林慶文,1995,食品化學。國立編譯館。
梁崇正,2002,明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化,國立中央大學化學工程與材料工程學系。
郭育嘉,2013,應用現地乳化油生物屏障處理受含氯有機物污染之地下水,國立中山大學環境工程研究所。
陳家洵,2008,地下水之染問題之探討,Newsletter 應倫通訊第三期公害專題。
經濟部工業局,2004,土壤及地下水污染整治技術手冊。
劉振宇,2002,氧化/還原下之現地生物整治,第五期台灣土壤及地下水環境保護協會簡訊,第3-5頁。
劉瑋晨,2009),以基因分析法評估三氯乙烯污染地下水之微生物整治成效,國立中山大學環境工程研究所。
蔡明勳,2011,帶電Laponite懸浮液:凝膠與玻璃,國立中央大學化學工程與材料工程學系。
羅泳勝,2005,以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2之最佳醱酵產氫條件,國立成功大學化學工程學系。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.125.7
論文開放下載的時間是 校外不公開

Your IP address is 18.119.125.7
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code