Responsive image
博碩士論文 etd-0726118-185609 詳細資訊
Title page for etd-0726118-185609
論文名稱
Title
單胞藻 (Chlamydomonas reinhardtii) ascorbate peroxidase (APX)強光逆境下的功能性分析
Functional study of ascorbate peroxidase (APX) in response to high light in Chlamydomonas reinhardtii
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-08-26
關鍵字
Keywords
抗性、強光、Ascorbate peroxidase、單胞藻、活性氧
Ascorbate peroxidase, high light, tolerance, reactive oxygen species, Chlamydomonas reinhardtii
統計
Statistics
本論文已被瀏覽 5687 次,被下載 1
The thesis/dissertation has been browsed 5687 times, has been downloaded 1 times.
中文摘要
強光逆境下,植物對光的吸收大於其光合作用所能使用及排除的限度時,過多的能量會由氧氣接收,使細胞內產生大量的活性氧化物質 (reactive oxygen species, ROS),造成細胞內大分子結構改變進而導致生理代謝及生長分化變異。本研究發現在 TAP 混營之可存活強光 (1,400 E m-2 s-1) 下,單胞藻 (Chlamydomonas reinhardtii, CC400) 在短時間會有ROS、 ascorbic acid (AsA) 含量與Ascorbate peroxidase ( APX ) 活性增加,並使其AsA/DHA 快速上升,單胞藻 CrAPX1 (CrAPX1; Cre02.g087700.t1.1)、CrAPX2 (CrAPX2; Cre06.g285150.t1.1)及CrAPX4 (CrAPX4; Cre05.g233900.t1.1),在其強光反應下RNA表現量可見CrAPX4高於CrAPX1與CrAPX2。因此本研究先針對 APX4 對於單胞藻強光耐性之重要性進行探討,主要實驗以抑制表達 (downregulation)轉殖株探討強光耐性。抑制表達 CrAPX4 之轉殖株,使用之空載體為 pChlamyiRNA_3 vector,接上 PSAD::CrAPX-amiRNA。抑制表達轉殖株經強光處理 (1,400 E m-2 s-1) 後,APX活性下降進而造成ASA明顯增多,DHA於強光也可見其增多(可能是AsA直接與H2O2作用形成)。其存活率低於野生型,以2-thiobarbituric acid reacting substances (TBARS) 測定脂質過氧化程度含量高於野生型;綜合結果,缺乏 CrAPX 能夠會使單胞藻 APX活性下降,在強光下ROS無法有效的受APX去除,進而降低單胞藻對強光逆境的抗性。
Abstract
When light absorption is higher than photosynthetic utilization under high light stress, excess energy will be accepted by O2 and in turn a large reactive oxygen species (ROS) produce, then leads to alteration of macromolecule structure and subsequently physiological and metabolic changes. This studydiscovered Chlamydomonas reinhardtii (CC400) can survive under 1,400 E m-2 s-1 , and ROS, ascorbic acid (AsA) contents, AsA/DHA ratio increase, and ascorbate peroxidase ( APX ) activity increased in short time. C. reinhardtii has CrAPX1 (CrAPX1;Cre02.g087700.t1.1), CrAPX2 (CrAPX2; Cre06.g285150.t1.1) and CrAPX4 (CrAPX4; Cre05.g233900.t1.1). Under the high light stress, the amount of RNA expression showed that CrAPX4 was higher than CrAPX1 and CrAPX2. The main experiment used the study of mutant strains inhibiting CrAPX4 to study the tolerance of high light stress.

The downregulation CrAPX4 transformants were made through the transformation of pClamyiRNA_3 vector by PSAD::CrAPX4-amiRNA. Uner high light condition (1,400 E m-2 s-1), the APX activity of downregulation transformants was significantly inhibited, and the ASA increased significantly. DHA also showed an increase in high light stress (AsA may be directly oxidized in response to H2O2 role).The survival rate is lower than that of the wild type, and the level of lipid peroxidation is higher than that of the wild. As a result, the downregulation of CrAPX4 can decrease the APX activity of C. reinhardtii. Under high light stress, ROS can not be effectively removed by decreased APX, which reduces the resistance of unicellular algae to high light stress.
目次 Table of Contents
誌謝 ................................ ................................ ................................ .............................. iii
摘要 ................................ ................................ ................................ ............................... iv
Abstract AbstractAbstract ................................ ................................ ................................ .......................... v
目錄 ................................ ................................ ................................ ............................... vi
圖目錄 ................................ ................................ ................................ ........................ viii viii
表目錄 ................................ ................................ ................................ ............................ x
壹、 前言 ................................ ................................ ................................ ............... 1
貳、 材料方法 ................................ ................................ ................................ ....... 5
一、 藻類栽培與處理.................................................................................... 5
二、 螢光分析細胞中活性氧化物質 (reactive oxygen species, ROS) 含量 6
三、 蛋白質含量分析.................................................................................... 7
四、 Ascorbate peroxidase (APX, EC 1.11.1.11) 之抽取及活性分析 ........ 7
五、 Ascorbic acid (AsA)/Oxidized AsA(DHA) 含量測定 ......................... 8
六、 脂質過氧化 (lipid peroxidation) 程度之測定 .................................... 9
七、 Total RNA 萃取 .................................................................................... 9
八、 cDNA 合成 ......................................................................................... 10
九、 Real-time PCR 測定 ........................................................................... 11
十、 CrAPX1, CrAPX2, CrAPX4 amiRNA 表達載體 (pChlamiRNA3-CrAPX1, pChlamiRNA3-CrAPX2, pChlamiRNA3-CrAPX4) 構建 ................................................................... 12
接合反應物成分為膠體純化之 pChlamyiRNA3、磷酸化處理之 ................ 15
十一、 藻類轉殖.......................................................................................... 18
十二、 藻類篩選.......................................................................................... 19
參、 結果 ................................ ................................ ................................ ............. 21
一、 強光 (1,400 E m-2 s-1) 對單胞藻 (Chlamydomonas reinhardti) 生理表現之影響 ............................................................................................. 21
二、 單胞藻 CrAPX 分子特性分析 .......................................................... 23
vii
三、 CrAPX1, CrAPX2, CrAPX4 抑制表達 (downregulation) 轉殖載體 (vector) 構築與篩選 .................................................................................. 25
四、 抑制表達轉殖株說明APX 是強光適應之因子............................... 26
肆、 討論 ................................ ................................ ................................ ............. 27
伍、 參考文獻 ................................ ................................ ................................ ..... 29
參考文獻 References
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134-1151.
Apel K and Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol 55: 373-399.
Asada K. (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant. Biol.50: 601–639
Bowler C., Fluhr R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5, 241–246.
Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 72; 248-254.
Caudy AA, Bernstein E; Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. (2001) Nature. 18;409(6818):363-6.
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M.(2012) Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol. 2012 Dec;35(4 (suppl)):1011-9.
Chen and Gallie, 2005 Z. Chen, D.R. GallieIncreasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol., 138 (2005), pp. 1673-1689
Elbashir SM, Lendeckel W, Tuschl T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15: 188-200.
Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 (6669): 806-11.
Foyer C.H. Noctor G. ( 2011 ) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 12– 18.
Fryer M. J., Ball L., Oxborough K., Karpinski S., Mullineaux P. M., Baker N. R. (2003). Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J. 33, 691–705.
Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P. (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J. Cell Sci. 114: 3857-3863.
Gallie, 2013a D.R. GallieThe role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth J. Exp. Bot., 64 (2013), pp. 433-443
Gallie, 2013b D.R. GallieL-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Article ID 795964
Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 1091–1101.
H.Y. Chang, S.T. Lin, T.P. Ko, S.M. Wu, T.H. Lin, Y.C. Chang, K.F. Huang, T.M. Lee. Enzymatic characterization and crystal structure analysis of Chlamydomonas reinhardtii dehydroascorbate reductase and their implications for oxidative stress. Plant Physiology and Biochemistry., 120 (2017), pp. 144-155.
Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi H, Chang-Xing Z, Hong-Bo S, Panneerselvam R. (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31: 427-436.
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J.Genet. 85: 237-254.
Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creissen G., Mullineaux P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654–657.
Khvorova A, Reynolds A, Jayasena SD. (2003) Functional siRNAs and miRNAs Exhibit Strand Bias. Cell 115: 209-216.
Kotchoni SO, Gachomo EW. The reactive oxygen species network pathways:an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. (2006) J Biosci. 31(3):389-404.
Lee Y. P., Kim S. H., Bang J. W., Lee H. S., Kwak S. S., Kwon S. Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 26, 591–598.
Lin ST, Chiou CW, Chu YL, Hsiao Y, Tseng YF, Chen YC, Chen HJ, Chang HY, Lee TM. Enhanced Ascorbate Regeneration Via Dehydroascorbate Reductase Confers Tolerance to Photo-Oxidative Stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 2016 Oct;57(10):2104-2121.
Mahajan S and Tuteja N. (2005) Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139-158
Maruta T., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., et al. . (2010). Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol. 51, 190–200.
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell 133: 116-127.
Mittler R.(2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.7: 405–410.
Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D. (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 58: 165-174.
Morita S., Kaminaka H., Masumura T., Tanaka K. (1999). Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol. 40, 417–422.
Nakoan, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasr. Plant Cell hysiol. 22: 867-880.
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24: 1420-1428.
Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O. (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18: 1-6.
Pignocchi C., Fletcher J. M., Wilkinson J. E., Barnes J. D., Foyer C. H. (2003). The Function of ascorbate oxidase in tobacco. Plant Physiol. 132, 1631–1641.
Pnueli, L., Liang, H., Rozenberg, M., and Mittler, R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsisplants. Plant J. 34, 187–203.
Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H. (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 40: 611-621.
Saxena S. C., Joshi P., Grimm B., Arora S. (2011). Alleviation of ultraviolet-C induced oxidative through overexpression of cytosolic ascorbate peroxidase. Biologia 66, 1052–1059.
Scandalios J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995–1014.
Schroda M. (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr. Genet. 49: 69-84.
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133.
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199-208.
Sirikhachornkit A. Niyogi K.K. (2010) Antioxidants and photo-oxidative stress responses in plants and algae. In Advances in Photosynthesis and Respiration: Chloroplast: Basics and Applications. Edited by Rebeiz C.A. Benning C. Bohnert H.J. Daniell H. Hoober J.K. Lichtenthaler H.K. et al. . pp. 379–396.
Sirisha L. ,Kanak K. ,Mahuya S., Jacinta S. . Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii.(2015) European Journal of Phycology . Pages 422-438.
Smirnoff N. Wheeler G.L. (2000) Ascorbic acid in plants: biosynthesis and function Crit. Rev. Biochem. Mol. Biol. 35 : 291– 314.
Teixeira F. K., Menezes-Benavente L., Galvão V. C., Margis R., Margis-Pinheiro M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224, 300–314.
Wang et al., 2010 Z. Wang, Y. Xiao, W. Chen, K. Tang, L. ZhangIncreased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis J. Integr. Plant Biol., 52 (2010), pp. 400-409
Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3: e1829.
Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS. (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol. 142: 429-40.
Yabuta Y., Motoki T., Yoshimura K., Takeda T., Ishikawa T., Shigeoka S. (2002). Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J. 32, 915–925.
Zeng Y, Wagner EJ, Cullen BR. (2002) Both natural and designed micro RNAs technique can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9: 1327-1333.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code