Responsive image
博碩士論文 etd-0726118-223000 詳細資訊
Title page for etd-0726118-223000
論文名稱
Title
微流體晶片整合氦氣電漿於金奈米粒子合成及其於汞離子之即時偵測
Integrated Microfluidic Chip for Helium Plasma Synthesis of Nanoparticles and On-Site Detection of Hg2+ Ions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-08-26
關鍵字
Keywords
介電質放電、常壓氦氣電漿、微流體、汞離子偵測、金奈米粒子
microfluidic, gold nanoparticles, dielectric barrier discharging, atmospheric pressure helium plasma, mercury ion detection
統計
Statistics
本論文已被瀏覽 5689 次,被下載 91
The thesis/dissertation has been browsed 5689 times, has been downloaded 91 times.
中文摘要
本研究開發一個微流體晶片,此晶片可以在微流道的內部產生常壓氦氣電漿,並以1.0 mM的HAuCl4水溶液作為金離子的來源,使用氦氣電漿進行金奈米粒子的合成,並透過3-硫醇丙酸分子修飾金奈米粒子,再直接於晶片上使用UV-Vis分光光度法來檢測水溶液樣本中的汞離子。相較於傳統的金奈米粒子製作方法,本研究使用電漿來為水溶液中的金屬離子提供電子,取代傳統方法中的化學還原劑(例如檸檬酸鈉、硼氫化鈉等),達到還原金離子的目的。因為金屬離子是透過電漿提供的電子進行還原,因此在還原反應的過程中隨時可以透過移除外加電場的方式使反應中止,而在最終的膠體金中也不會有任何還原劑的殘留。此外,本研究也探討了電漿合成系統中的電漿的工作電壓、工作電流以及氦氣流量,這三個主要參數對合成結果的影響。結果顯示,在這三種參數中只有電漿的工作電流會對金奈米粒子的合成結果造成明顯的影響。在晶片的製程中,本研究使用雷射雕刻機直接對壓克力基板進行加工,並成功地在基板上創造出具有不同深度的2.5D結構,最後再使用雙面膠帶將具有微流道結構的壓克力基板固定於玻璃基板上。本研究設計的微流體晶片除了可以在微流道中產生電漿並合成金奈米粒子之外,也成功地透過微結構的設計,達到將氣體與液體從混合的狀態中分離的目的。再來,表面經過3-硫醇丙酸分子修飾過的金奈米粒子,可以在樣本溶液中含有汞離子的情況下互相聚集,使水溶液的顏色發生改變,搭配UV-Vis分光光度法的量測,最終可以成功地辨別Hg2+濃度為10-7 M至10-3 M (0.02至20 ppm)的樣本溶液。
Abstract
This study presents a microfluidic chip which is capable to generate helium plasma under atmospheric pressure and to synthesize gold nanoparticle inside the chip. The on-chip Hg2+ detection is achieved by using UV-Vis colorimetric. Compared to the traditional method of gold nanoparticle synthesis, the source of the electron for reducing the metal ion is replaced from the chemical reducing agent (e.g., sodium citrate) to helium plasma. The reducing reaction can be terminated immediately without any residual chemical substance by removing the external electric field for exciting the helium plasma. Furthermore, this study has investigated the influence form three major parameters including the working voltage, working current, and the flow rate of helium gas to the result of gold nanoparticle synthesis. The results show the working current is the only one parameter that affects the result of the synthesized gold nanoparticles. For the fabrication of the microfluidic chip, the channel structure with different depth was created on the blank PMMA substrates by CO2 laser ablation process. The processed PMMA substrate was bonded to the glass slide with a pair of the interdigitated electrode by the double-sided tape. Except for the on-chip gold nanoparticle synthesis, the separation of gas and liquid is also achieved by the specially designed micro-structure. Finally, the gold nanoparticles aggerate with each other and make the color change of the solution by the 3-MPA molecular in the exist of Hg2+. The results showed that the developed method could detect the Hg2+ ion with the concentration from 10-7 M (0.02 ppm) to 10-3 M (20 ppm) in the sample solution using the 3-MPA functionalized gold nanoparticles.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
符號表 xii
簡寫表 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 汞的性質與應用 2
1.2.1 元素態的汞 2
1.2.2 汞的衍生化合物 3
1.2.3 汞的生物累積 4
1.3 汞的檢測 6
1.3.1 質譜分析法 6
1.3.2 螢光光譜法 7
1.3.3 電化學檢測法 8
1.3.4 UV-Vis分光光度法 9
1.4 金奈米粒子 13
1.4.1 金奈米粒子的光學特性 13
1.4.2 傳統的金奈米粒子製作方法 14
1.4.3 使用電漿製作金奈米粒子 16
1.5 動機與目的 19
1.6 論文架構 20
第二章 原理 21
2.1 使用電漿合成金奈米粒子 21
2.2 使用金奈米粒子檢測汞離子 23
第三章 設計製作 25
3.1 實驗架構 25
3.1.1 在離心管中使用電漿合成金奈米粒子 25
3.1.2 在微流體晶片中合成金奈米粒子 27
3.1.3 UV-Vis光學量測架構 29
3.1.4 吸收光譜數據的後處理 30
3.2 微流道晶片的設計與製作 32
3.2.1 晶片設計 32
3.2.2 晶片製作 33
3.2.3 導管連結器製作 35
3.3 金奈米粒子TEM試片製作 37
3.4 實驗材料 38
第四章 結果與討論 40
4.1 電漿參數對合成結果的影響 40
4.1.1 電漿的工作電壓對合成結果的影響 40
4.1.2 電漿的工作電流對合成結果的影響 41
4.1.3 不同氣體流量對合成結果的影響 42
4.2 微流道晶片的效能 44
4.2.1 雷射加工後的壓克力基板 44
4.2.2 在微流道中產生氦氣電漿 46
4.2.3 氣、液分離的效能測試 46
4.2.4 金奈米粒子的實際顯微影像 47
4.2.5 金奈米粒子的電子繞射圖紋 49
4.2.6 3-MPA、膠體金與樣本溶液比例優化 51
4.2.7 汞離子的檢測 52
4.2.8 實際樣本量測 54
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來展望 57
參考文獻 58
自述 63
參考文獻 References
[1] 蘇明德, "汞的自述," 科學發展, vol. 429, pp. 64-70, 2008.
[2] L. C. Masur, "A Review of the Use of Mercury in Historic and Current Ritualistic and Spiritual Practices," Alternative Medicine Review, vol. 16, no. 4, pp. 314-320, 2011.
[3] A. Shenoy, "Is It the End of the Road for Dental Amalgam? A Critical Review," Journal of Conservative Dentistry (JCD), vol. 11, no. 3, p. 99, 2008.
[4] M. M. Veiga, P. A. Maxson, and L. D. Hylander, "Origin and Consumption of Mercury in Small-scale Gold Mining," Journal of Cleaner Production, vol. 14, no. 3-4, pp. 436-447, 2006.
[5] O. Malm, "Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon," Environmental Research, vol. 77, no. 2, pp. 73-78, 1998.
[6] J. J. Swenson, C. E. Carter, J.-C. Domec, and C. I. Delgado, "Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports," PLOS ONE, vol. 6, no. 4, p. e18875, 2011.
[7] W. Ren, L. Duan, Z. Zhu, W. Du, Z. An, L. Xu, C. Zhang, Y. Zhuo, and C. Chen, "Mercury Transformation and Distribution Across a Polyvinyl Chloride (PVC) Production Line in China," Environmental Science & Technology, vol. 48, no. 4, pp. 2321-2327, 2014.
[8] L. Patrick, "Mercury Toxicity and Antioxidants: Part I: Role of Glutathione and Alpha-lipoic Acid in the Treatment of Mercury Toxicity-mercury Toxicity," Toxicology and Applied Pharmacology, vol. 7, pp. 456-471, 2002.
[9] R. A. Bernhoft, "Mercury Toxicity and Treatment: a Review of the Literature," Journal of Environmental and Public Health, vol. 2012, p. 460508, 2012.
[10] K. Iqbal and M. Asmat, "Uses and Effects of Mercury in Medicine and Dentistry," Journal of Ayub Medical College Abbottabad, vol. 24, no. 3-4, pp. 204-7, 2012.
[11] R. C. Larock, Organomercury Compounds in Organic Synthesis. Springer Science & Business Media, 2012.
[12] A. Shafeeq, A. Muhammad, W. Sarfraz, A. Toqeer, S. Rashid, and M. Rafiq, "Mercury Removal Techniques for Industrial Waste Water," World Academy of Science, Engineering and Technology, vol. 6, pp. 12-26, 2012.
[13] F. M. M. Morel, A. M. L. Kraepiel, and M. Amyot, "The Chemical Cycle and Bioaccumulation of Mercury," Annual Review of Ecology and Systematics, vol. 29, pp. 543-566, 1998.
[14] R. P. Mason, A. L. Choi, W. F. Fitzgerald, C. R. Hammerschmidt, C. H. Lamborg, A. L. Soerensen, and E. M. Sunderland, "Mercury Biogeochemical Cycling in the Ocean and Policy Implications," Environmental Research, vol. 119, pp. 101-17, 2012.
[15] P. Mahato, S. Saha, P. Das, H. Agarwalla, and A. Das, "An Overview of the Recent Developments on Hg2+ Recognition," RSC Advances, vol. 4, no. 68, pp. 36140-36174, 2014.
[16] A. Ordiano-Flores, F. Galvan-Magana, and R. Rosiles-Martinez, "Bioaccumulation of Mercury in Muscle Tissue of Yellowfin Tuna, Thunnus Albacares, of The Eastern Pacific Ocean," Biological Trace Element Research, vol. 144, no. 1-3, pp. 606-620, 2011.
[17] D. Raj, "Bioaccumulation of Mercury, Arsenic, Cadmium, and Lead in Plants Grown on Coal Mine Soil," Human and Ecological Risk Assessment: An International Journal, pp. 1-13, 2018.
[18] C. L. Senior, A. F. Sarofim, T. F. Zeng, J. J. Helble, and R. Mamani-Paco, "Gas-phase Transformations of Mercury in Coal-fired Power Plants," Fuel Processing Technology, vol. 63, no. 2-3, pp. 197-213, 2000.
[19] U. G. M. Assessment, "Sources, Emissions, Releases and Environmental Transport," UNEP Chemicals Branch, Geneva, Switzerland, vol. 42, 2013.
[20] 環保署, "飲用水水質標準," 行政院環境保護署環署毒字第 0980106331 E 號令發布, 2009.
[21] H. Cheng, C. Wu, L. Shen, J. Liu, and Z. Xu, "Online Anion Exchange Column Preconcentration and High Performance Liquid Chromatographic Separation with Inductively Coupled Plasma Mass Spectrometry Detection for Mercury Speciation Analysis," Analytica Chimica Acta, vol. 828, pp. 9-16, 2014.
[22] R. X. Zhang, X. Y. Zhuang, S. Liu, F. R. Song, and Z. Q. Liu, "Novel Electrospray Ionization-tandem Mass Spectrometry Strategy for Monitoring Mercury(II) Ion Based on the Competing System of Mercury Specific DNA and Glutathione to Mercury(II) Ion," Analytical Methods, vol. 6, no. 15, pp. 5746-5752, 2014.
[23] W. Y. Lin, X. W. Cao, Y. D. Ding, L. Yuan, and L. L. Long, "A Highly Selective and Sensitive Fluorescent Probe for Hg2+ Imaging in Live Cells Based on a Rhodamine-thioamide-alkyne Scaffold," Chemical Communications, vol. 46, no. 20, pp. 3529-3531, 2010.
[24] N. Ratner and D. Mandler, "Electrochemical Detection of Low Concentrations of Mercury in Water Using Gold Nanoparticles," Analytical Chemistry, vol. 87, no. 10, pp. 5148-5155, 2015.
[25] C. C. Huang and H. T. Chang, "Parameters for Selective Colorimetric Sensing of Mercury(II) in Aqueous Solutions Using Mercaptopropionic Acid-modified Gold Nanoparticles," Chemical Communications, no. 12, pp. 1215-1217, 2007.
[26] X. H. Xu, Y. F. Li, J. T. Zhao, Y. Y. Li, J. Lin, B. Li, Y. X. Gao, and C. Y. Chen, "Nanomaterial-based Approaches for the Detection and Speciation of Mercury," Analyst, vol. 140, no. 23, pp. 7841-7853, 2015.
[27] Y. J. Kim, R. C. Johnson, and J. T. Hupp, "Gold Nanoparticle-based Sensing of "Spectroscopically Silent" Heavy Metal Ions," Nano Letters, vol. 1, no. 4, pp. 165-167, 2001.
[28] E. De Hoffmann, "Mass Spectrometry," Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
[29] A. Venter, M. Nefliu, and R. G. Cooks, "Ambient Desorption Ionization Mass Spectrometry," Trac-Trends in Analytical Chemistry, vol. 27, no. 4, pp. 284-290, 2008.
[30] J. R. Lakowicz, "Principles of Frequency-domain Fluorescence Spectroscopy and Applications to Cell Membranes," in Fluorescence Studies on Biological Membranes: Springer, 1988, pp. 89-126.
[31] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: Wiley, 2001, pp. xxi, 833 p.
[32] C. T. T. and C. S. K., "Colorimetric Determination of pH Values," Journal of the Society of Dyers and Colourists, vol. 51, no. 4, pp. 129-132, 1935.
[33] D. Swinehart, "The Beer-Lambert Law," Journal of Chemical Education, vol. 39, no. 7, p. 333, 1962.
[34] C. Wang and C. X. Yu, "Detection of Chemical Pollutants in Water Using Gold Nanoparticles as Sensors: a Review," Reviews in Analytical Chemistry, vol. 32, no. 1, pp. 1-14, 2013.
[35] X. Xue, F. Wang, and X. Liu, "One-step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates," Journal of the American Chemical Society, vol. 130, no. 11, pp. 3244-5, 2008.
[36] C. J. Yu and W. L. Tseng, "Colorimetric Detection of Mercury(II) in a High-Salinity Solution Using Gold Nanoparticles Capped with 3-mercaptopropionate Acid and Adenosine Monophosphate," Langmuir, vol. 24, no. 21, pp. 12717-12722, 2008.
[37] Y. C. Yeh, B. Creran, and V. M. Rotello, "Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology," Nanoscale, vol. 4, no. 6, pp. 1871-80, 2012.
[38] S. Link and M. A. El-Sayed, "Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles," Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212-4217, 1999.
[39] J. Turkevich, P. C. Stevenson, and J. Hillier, "A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
[40] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of Thiol-derivatized Gold Nanoparticles in a 2-phase Liquid-liquid System," Journal of the Chemical Society-Chemical Communications, no. 7, pp. 801-802, 1994.
[41] H. C. Lee, T. H. Chen, W. L. Tseng, and C. H. Lin, "Novel Core Etching Technique of Gold Nanoparticles for Colorimetric Dopamine Detection," Analyst, vol. 137, no. 22, pp. 5352-5357, 2012.
[42] J. P. Ma, S. M. Y. Lee, C. Q. Yi, and C. W. Li, "Controllable Synthesis of Functional Nanoparticles by Microfluidic Platforms for Biomedical Applications - A Review," Lab on a Chip, vol. 17, no. 2, pp. 209-226, 2017.
[43] M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, Z. P. Aguilar, H. Rodgers, W. Hamilton, T. Marutharaj, C. Webb, M. B. Lawrenz, and R. Dakshinamurthy, "Gold Nanoparticles: Various Methods of Synthesis and Antibacterial Applications," Frontiers in Bioscience-Landmark, vol. 19, pp. 1320-1344, 2014.
[44] Q. Chen, J. S. Li, and Y. F. Li, "A Review of Plasma-liquid Interactions for Nanomaterial Synthesis," Journal of Physics D-Applied Physics, vol. 48, no. 42, 2015.
[45] K. I. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, and T. Torimoto, "Single-step Synthesis of Gold-silver Alloy Nanoparticles in Ionic Liquids by a Sputter Deposition Technique," Chemical Communications, no. 6, pp. 691-693, 2008.
[46] Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama, and T. Mizuno, "Controlled Formation of Metallic Nanoballs During Plasma Electrolysis," Applied Physics Letters, vol. 91, no. 4, Jul 23 2007.
[47] N. Shirai, M. Nakazawa, S. Ibuka, and S. Ishii, "Atmospheric DC Glow Microplasmas Using Miniature Gas Flow and Electrolyte Cathode," Japanese Journal of Applied Physics, vol. 48, no. 3, 2009.
[48] S. K. Balasubramanian, L. M. Yang, L. Y. L. Yung, C. N. Ong, W. Y. Ong, and L. E. Yu, "Characterization, Purification, and Stability of Gold Nanoparticles," Biomaterials, vol. 31, no. 34, pp. 9023-9030, 2010.
[49] S. F. Sweeney, G. H. Woehrle, and J. E. Hutchison, "Rapid Purification and Size Separation of Gold Nanoparticles via Diafiltration," Journal of the American Chemical Society, vol. 128, no. 10, pp. 3190-3197, 2006.
[50] E. J. Hart and M. Anbar, "Hydrated electron," 1970.
[51] J. A. Laverne and H. Yoshida, "Production of the Hydrated Electron in the Radiolysis of Water with Helium-Ions," Journal of Physical Chemistry, vol. 97, no. 41, pp. 10720-10724, 1993.
[52] N. Shirai, S. Uchida, and F. Tochikubo, "Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid," Japanese Journal of Applied Physics, vol. 53, no. 4, 2014.
[53] 江政鴻, "創新對稱型介電質放電大氣電漿游離源於質譜分析之應用," 機械與機電工程學系, 中山大學, 2012.
[54] 陳俊邑, "氦氣電漿及電噴灑雙游離源系統於質譜分析之應用," 機械與機電工程學系, 中山大學, 2016.
[55] L. R. Goldman, M. W. Shannon, and H. American Academy of Pediatrics: Committee on Environmental, "Technical Report: Mercury in the Environment: Implications for Pediatricians," Pediatrics, vol. 108, no. 1, pp. 197-205, 2001.
[56] J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, "Effect of Particle Size Distributions on Absorbance Spectra of Gold Nanoparticles," Physica E-Low-Dimensional Systems & Nanostructures, vol. 42, no. 5, pp. 1605-1609, 2010.
[57] H. Zhang, Z. Xu, J. Shen, X. Li, L. Ding, J. Ma, Y. Lan, W. Xia, C. Cheng, Q. Sun, Z. Zhang, and P. K. Chu, "Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme," Scientific Reports, vol. 5, p. 10031, 2015.
[58] 陳力俊, 材料電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心發行, pp, 74-81, 2006.
[59] W. P. Davey, "Precision Measurements of the Lattice Constants of Twelve Common Metals," Physical Review, vol. 25, no. 6, p. 753, 1925.
[60] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering : An Introduction, 8th ed. Hoboken, NJ: John Wiley & Sons, pp. 47-71, 2010.
[61] E. M. Liston, "Plasma Treatment for Improved Bonding - a Review," Journal of Adhesion, vol. 30, no. 1-4, pp. 199-218, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code