Responsive image
博碩士論文 etd-0727101-110448 詳細資訊
Title page for etd-0727101-110448
論文名稱
Title
以超音波霧化製程製備之SnO2薄膜性質
Characterization of the SnO2 thin film derived from an ultrasonic atomization process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-23
繳交日期
Date of Submission
2001-07-27
關鍵字
Keywords
超音波霧化、薄膜、二氧化錫
ultrasonic atomization, thin film, tin oxide
統計
Statistics
本論文已被瀏覽 5748 次,被下載 4371
The thesis/dissertation has been browsed 5748 times, has been downloaded 4371 times.
中文摘要
摘要
本研究以自行設計並組裝之超音波霧化鍍膜系統。將含有先驅物之溶液以攜帶氣體攜至已加熱之基材,使溶液因熱解反應而完成鍍膜。而溶液之先驅物為SnCl4,溶劑為乙醇,攜帶氣體則為氮氣。實驗內容包括不同沉積溫度系列及不同攜帶氣體流量系列。
本研究以TaCl5為摻雜物用以改善薄膜之導電性,進而觀察並比較摻雜Ta對薄膜之結晶性、表面形貌、透光性及導電度之影響。並希望找出透光性及導電度之最佳Ta摻雜量。
在XRD分析中發現,SnO2薄膜在沉積溫度350℃以下為非晶質。在沉積溫度400~500℃及攜帶氣體流量2.5~10 l/min時則為多晶膜,且其晶粒尺寸約在30~50 nm之間。
在SEM觀察中發現,隨沉積溫度及攜帶氣體流量增加,孔隙隨之增多。由Hall measurement之量測則發現其電子移動率隨之下降。而在表面形貌方面,無論有無摻雜Ta,薄膜之表面形貌無明顯不同。
由UV-Visible之穿透光譜在550nm波長時,所有薄膜之透光率約在70%~82%之間。而Ta之摻雜對透光性無明顯之影響。而Hall measurement之量測則發現,Ta之摻雜使電子移動率增加數倍之多,而載子濃度則增加約一個數量級。其中最小之電阻率為1.2*10-1Ω-cm發生於Ta摻雜4 at%時。
Abstract
Abstract
A thin film deposition system using ultrasonic atomization is designed and constructed. Solution containing precursors is transported by carrying gas to the heated substrate where deposition is accomplished by pyrolysis. Tests including series of varying flow rate of carrying gas and varying substrate temperature were carried out with solutions of SnCl4 precursor in C2H5OH solvent and N2 as carrying gas.
Also, TaCl5 was used as dopant to improved the electrical conductivity. The effects of doping in crystallinity, surface morphology, optical transmittance and electrical conductivity of the deposited thin films were examined and the optimal percentage of doping for electrical conductivity and optical transmittance was found.
XRD reveals that the thin film was amorphous when the deposition temperature was below 350℃. Polycrystalline thin films with grains size of 30~50nm were obtained with deposition temperature of 400~500℃ and N2 flow rate of 2.5 ~10 l/min. SEM examination reveals that porosity increases with increasing deposition temperature and N2 flow rate, which consequently reduces the electron mobility, as seen in Hall measurement. No discernible difference was observed between the morphology of the doped and undoped thin films.
As shown in the UV-Visible spectra representative transmittance of all films at 550nm radiation ranges between 70% and 82%. No discernible effect was observed for Ta-doping. Hall measurement reveals that Ta-doping increases the electron mobility and carrier concentration by several times and one order of magnitude, respectively. The minimum resistivity is 1.2*10-1 Ω- cm occurring at 4 at% Ta doping.
目次 Table of Contents
目錄
摘要 II
目錄 III
圖目錄 V
表目錄 VII
第一章 研究背景 1
第二章 文獻回顧 4
2.1 二氧化錫結構與特性簡介 4
2.2 二氧化錫的鍍膜方法 7
2.3 超音波霧化的原理 8
2.4 溶膠的熱解反應 9
2.5 由UV-visible穿透光譜計算薄膜厚度及光學性質 11
第三章 實驗方法與步驟 13
3.1 基材之準備 14
3.2 溶膠(sol)的準備 15
3.2.1 SnCl4 溶膠的準備 15
3.2.2 TaCl5 溶膠的準備 15
3.3 超音波霧氣沉積裝置之建構 17
3.3.1 超音波霧氣沉積設備之組裝 17
3.2.2 超音波霧氣沉積系統之工作參數 20
3.4 鍍膜參數設定 21
3.4.1 T系列:變化沉積溫度 21
3.4.2 R系列:變化攜帶氣體流量 21
3.4.3 D系列:變化摻雜物百分比 21
3.5薄膜分析、量測使用之儀器 22
3.5.1. X-光繞射(X-ray diffraction)分析 22
3.5.2 掃描式電子顯微鏡(SEM) 分析 23
3.5.3 紫外光-可見光光譜儀(UV-Visible)分析 26
3.5.4 Hall measurement導電性量測 27
第四章 實驗結果 29
4.1 XRD結果 29
4.1.1 T系列 29
4.1.2 R系列 32
4.1.3 D系列 34
4.1.4 晶粒尺寸計算 36
4.2 UV-visible 結果 44
4.2.1 T系列 44
4.2.2 R系列 47
4.2.3 D系列 50
4.2.4由穿透光譜計算之薄膜厚度及光學性質 53
4.3 SEM結果 55
4.3.1 截面觀察 55
4.3.2 表面觀察 57
4.4 Hall measurement導電性量測結果 75
4.4.1 T系列 75
4.4.2 R系列 78
4.4.3 D系列 81
第五章 討論 84
5.1 T系列之討論 84
5.2 R系列之討論 86
5.3 D系列之討論 88
5.4 影響晶粒尺寸之因素 90
5.5穿透光譜之分析 91
5.5.1 透光性分析 91
5.5.2 厚度分析 91
第六章結論 94
第七章 參考文獻 95

參考文獻 References
1. L.Sangaletti, L.E. Depero, A. Dieguez, G. Marca, and J.R. Morante, Sensors and Actuators. B 44 (1997) 268-274.
2. F.M. Amanullah, M. Saleh Al-Mobarak, A.M. Al-Dhafiri, and K.M. Al-Shibani, Materials Chemistry and Physics, 59 (1999) 247-253.
3. J. Dutta, P. Roubeau, T. Emei-aud, J. M. Laurent, A. Smith, F. Leblanc and J. Pen-in, Thin Solid Films, 239 (1994) 150-155
4. E. Aperathitis, Z.Hatzopoulos, M. Androulidaki, V. Foukaraki, A. Kondilis, P. Panayotatos, C.G.. Scott and D. Sands, Materials and Solar Cells, 45 (1997) 161-168.
5. R.S. Hiratsuka, S.H. Pulcinelli and C.V. Santilli, Journal of Non-Crystalline Solids. 121 (1990) 76-83.
6. Y. Kobayashi, M. Okamoto and A. Tomita, Journal of Materials Science, 31 (1996) 6125-6127.
7. M. D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rell and P. Siciliano, Sensors and Actuators, B 24~25(1995) 465-478.
8. T. Moohida, K.. Kikuchi. T. Kordo, H. Ueno and Yoshinobu, Sensors and Actuators, B 24~25 (1995) 433-445.
9. A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet, Thin Solid Films, 5(1998) 17-21.
10. G. Mavrodiev, M. Gajdardziska, and N. Novkovski, Thin Solid Films, 113 (1984) 93-100.
11. G. Sanon, R. Rup and A. Mansingh, Thin Solid Films, 190 (1990) 287-301.
12. R.G. Gordon, J. Proscia, F.B. Ellis, and A.E. Delahoy, Solar Energy Materials, 18 (1989) 263-281.
13. A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet, Thin Solid Films, 266(1995) 20-30.
14. H. lida, T. Mishuku, A. lto and K. Kato, Solar Energy Materials, 17 (1988) 407-423.
15. J. Dutta, J. Perrin, and T. Emeraud, Journal of Materials Science, 30 (1995) 53-62.
16. S. Shanthi, C. Subramanian, and P. Ramasamy, Journal of Crystal Growth, 197 (1999) 858-864.
17. T.D. Senguttuvan, and L.K. Malhotra, Thin Solid Films, 289[l-2] (1996) 22-28.
18. E. Shanthi, A. Banerjee, V. Dutta, and K.L. Choppra, Journal of Application Physics, 53 (1982) 1615-1621.
19. H. haitjema, J.J.Ph. Elich and C.J. hoogendoorn, Solar Energy Materials, 18 (1989) 283-297.
20. A.E.DE. Souza, S.H. Monteiro, C.V. Santilli, and S.H. Pulcinelli, Journal of Materials Science: Materials in Electronics, 8 (1997) 265-270.
21. Z.M. Zai-zebski, and J.P. Maiton, Journal of the Electrochemical Society, 123 (1976) 199C-205C.
22. Z.M. Zai-zebski, and J.P. Maiton, Journal of the Electrochemical Society, 123 (1976) 299C-310C.
23. Z.M. Zai-zebski, and J.P. Maiton, Journal of the Electrochemical Society, 123 (1976) 333C-346C.
24. G..Caituran, P. G. Orsini, P. Scardi and R.D. Maggio, Journal of Materials Science, 23 (1988) 3156-3160.
25 . F.D. Bloss, Crystallography and Crystal Chemistry, (1971) 206-207.
26. G. Blandent, M. Court and Y. Lagarde, Thin Solid Films, 77 (1981) 81- 90.
27. J.C. Manifacier, and J. Gasiot, Journal of Physics E: Scientific Instruments, 9 (1976) 1002-1004.
28. B.D. Cullity, Elements of X-ray Diffraction, Wesley: New York: (1978) 102.
29. H. Ogawa, M. Nishikawa, and A. Abe, Journal of Application Physics, 53 (6) (1982) 4448-4455.
30. B. Stjema, E. Olsson, and C.G. Granqvist, Journal of Application Physics, 76 (6) (1994) 3797-3817.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code