Responsive image
博碩士論文 etd-0727106-113435 詳細資訊
Title page for etd-0727106-113435
論文名稱
Title
以表面改質之二氧化矽奈米粉體強化聚二醚酮基材
On the PEEK Composites Reinforced by Surface-Modified Nano-Silica
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-22
繳交日期
Date of Submission
2006-07-27
關鍵字
Keywords
聚二醚酮、奈米高分子複合材料、熱性質、二氧化矽
PEEK, Nanocomposite, Thermal properties, Silica
統計
Statistics
本論文已被瀏覽 5694 次,被下載 3230
The thesis/dissertation has been browsed 5694 times, has been downloaded 3230 times.
中文摘要
本研究嘗試利用熱壓成型(compression molding)之方式製備出PEEK/SiO2奈米高分子複合材料,並利用萬能材料試驗機、微硬度機、動態機械分析儀、熱機械分析儀、熱重損失分析儀、熱差掃瞄卡計、掃描式電子顯微鏡、廣角X-ray繞射儀分析等儀器來分析複合材料的特性。探討SiO2奈米顆粒在高分子PEEK中分散的情形和比較SiO2有無作表面改質對PEEK的機械性質、熱性質之差異,並且試圖建立不同SiO2添加量對PEEK的強化趨勢,期望製備出性能優良之PEEK/SiO2奈米高分子複合材料。實驗結果顯示:(1)SiO2奈米顆粒分散性方面,從SEM及TEM中可以很明顯觀察出來,經過表面改質之SiO2奈米顆粒在高分子PEEK基材中有較佳的分散效果,而且SiO2奈米顆粒團聚的尺寸也較小。(2)微觀組織方面,在XRD分析中可以發現到隨著添加經過表面改質之SiO2,PEEK/SiO2複合材料的繞射峰會往高角度的方向移動,這意味著高分子PEEK結晶區域之晶面間距越緊密。(3)熱性質方面,在DSC所測得的結果顯示,不管在強化材SiO2有無經過表面改質,其熔融溫度、結晶溫度及結晶度皆差異不大,而結晶度有隨著SiO2添加量的上升而有下降之趨勢;經由TMA分析結果發現,隨著SiO2含量的增加,材料的熱膨脹係數會隨之降低。另外,在添加強化材SiO2經過表面改質之複材中,發現其熱膨脹係數皆比添加未改質SiO2來的高,此現象與材料之微結構有關。(4)機械性質方面,硬度測試分析中可以發現到隨著SiO2添加量的上升,PEEK/SiO2複合材料的Hv硬度值有逐漸上升的趨勢;室溫拉伸測試分析中發現添加具有剛性的SiO2可以幫助提升材料的楊氏係數,但卻使材料變的較脆,以至於在拉伸時斷裂得非常快,所以在極限抗拉強度及破斷應變量的反應方面會較低;經由DMA分析中可以發現隨著SiO2添加量的上升,PEEK/SiO2複合材料的儲存模數(E’)在Tg溫度前後有一個很明顯的上升趨勢,這是由於添加了強化材SiO2增加了材料的剛性所導致,而tan
Abstract
In this study, PEEK/SiO2 nanocomposites were fabricated by means of simple compression molding technique. The performances and properties of the resulting PEEK nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the modified nanosilica was seen to disperse more uniformly than the unmodified counterparty. The XRD patterns of the modified-silica filled PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. As for the thermal properties of the resulting PEEK nanocomposites, there is no significant difference for the melting and crystallization temperatures, as well as the degree of crystallization between the modified and unmodified silica filled PEEK nanocomposites. The TMA results show that the coefficient of thermal expansion (CTE) becomes lowered when the content of the nanosilica increases. Furthermore, the CTE of the modified-silica filled PEEK nanocomposites shows the higher CTE values, as compared with those of the unmodified counterparts. In addition, the inclusion of the nanosilica could improve the microhardness and the stiffness of the resulting PEEK nanocomposites with the sacrifice of the elongation, as evident from the tension and DMA testing.
目次 Table of Contents
目錄 I
表目錄 IV
圖目錄 V
摘要 IX
英文摘要 X
致謝 XI
第一章 前言 1
第二章 文獻回顧 3
2-1 聚二醚酮(PEEK)之簡介 3
2-2 複合材料 4
2-2-1 複合材料之命名與分類 4
2-2-2 複合材料之特性 5
2-2-3 複合材料強化理論 7
2-3 奈米材料 8
2-3-1 奈米材料之物理效應 9
2-3-2 奈米二氧化矽之簡介 10
2-3-3 奈米二氧化矽之表面改質 11
2-4 奈米高分子複合材料 12
2-5 奈米高分子複合材料之相關文獻 14
第三章 實驗方法與分析設備 17
3-1 實驗材料 17
3-2 實驗步驟 17
3-2-1 SiO2表面改質 18
3-2-2 PEEK粉末製備 18
3-2-3 SiO2與PEEK之混粉 18
3-2-4 PEEK/SiO2複合材料之製備 19
3-3 機械性質測試 19
3-3-1 微硬度測試 19
3-3-2 室溫拉伸測試 19
3-3-3 動態機械分析 20
3-4 微觀組織分析 20
3-4-1 掃瞄式電子顯微鏡 20
3-4-2 穿透式電子顯微鏡 21
3-4-3 廣角X-ray繞射儀 21
3-5 熱分析 21
3-5-1 熱差掃瞄卡計 21
3-5-2 熱重損失分析儀 21
3-5-3 熱機械分析儀 22
第四章 實驗結果 23
4-1 熱壓成型之板材外觀 23
4-2 微觀組織分析 23
4-2-1 掃瞄式電子顯微鏡之結果 23
4-2-2 穿透式電子顯微鏡之結果 24
4-2-3 X-ray繞射之結果 25
4-3 熱性質分析 26
4-3-1 熱差掃瞄卡計之結果 26
4-3-2 熱重損失分析儀之結果 28
4-3-3 熱機械分析儀之結果 28
4-4 機械性質分析 30
4-4-1 硬度測試之結果 30
4-4-2 室溫拉伸測試之結果 31
4-4-3 動態機械分析之結果 33
第五章 討論 35
5-1 SiO2表面改質之效應 35
5-2 機械性質結果分析 36
5-3 SiO2奈米顆粒之強化效果 39
第六章 結論 40
第七章 參考文獻 42
表 45
圖 62
參考文獻 References
[1] M. Sumita, T. Shizuma, K. Miyasaka, K. Ishikawa, Journal of Macromolecular Science: Physics, B22 (1983), pp. 601-618.
[2] P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: Polymer Chemistry, 33 (1995), pp. 1047-1057.
[3] H. Ishida, S. Campbell, J. Blackwell, Chemistry of Materials, 12 (2000), pp. 1260-1267.
[4] S. D. Burnside, E. P. Giannelis, Chemistry of Materials, 7 (1995), pp. 1597-1600.
[5] S. Houshyar, R. A. Shanks, A. Hodzic, Journal of Applied Polymer Science, 96 (2005), pp. 2260–2272.
[6] A. Gu, F. C. Chang, Journal of Applied Polymer Science, 79 (2001), pp.289-294.
[7] T. Agag, T. Koga, T. Takeichi, Polymer, 42 (2001), pp. 3399-3408.
[8] B. Zhou, X. Ji, Y. Sheng, L. Wang, Z. Jiang, European Polymer Journal, 40 (2004), pp. 2357-2363.
[9] C. M. Chan, J. Wu, J. X. Li, Y. K. Cheung, Polymer, 43 (2002), pp. 2981-2992.
[10] E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, J. Varlet, Polymer, 42 (2001), pp. 8759-8768.
[11] F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, Journal of Applied Polymer Science, 97 (2005), pp. 2382-2386.
[12] A. Tregub, H. M. Harel, Composites Science and Technology, 48 (1993), pp. 185-190.
[13] S. M. Bishop, Composite Structure, 3 (1985), pp. 295-318.
[14] K. Kocsis, K. Friedrich, Polymer, 27 (1986), pp. 1753-1760.
[15] S. H. Ahu, S. H. Kim, S. G. Lee, Journal of Applied Polymer Science, 94 (2004), pp. 812-818.
[16] W. H. Bonner, U.S. Patent 3,065,205 (1962).
[17] J. B. Rose, P. A. Staniland, U.S. Patent 4,320,224 (1982).
[18] S. J. Bai, M. Dotrong, E. J. Soloski, R. C. Evers, Journal of Polymer Science : Part B: Polymer Physics, 29 (1991), pp. 119-128.
[19] P. C. Dawson, D. J. Blundell, Polymer, 21 (1980), pp. 577-578.
[20] M. T. Bishop, F. E. Karasz, P. S. Russo, and K. H. Langley, Macromolecules, 18 (1985) pp. 86-93.
[21] Cong Wang, J. Ma, Wen Cheng, Surface and Coatings Technology, 173 (2003), pp. 271-275.
[22] D. Hull, T. W. Clyne, An Introduction to Composite Materials, 2nd Edition, Cambridge, (1996), pp. 1-6.
[23]吳仁傑,工業材料,125期,(1997),pp. 115-123.
[24]徐國財、張立德,奈米複合材料,五南圖書出版股份有限公司,(2004),pp. 2-16.
[25]馬振基,高分子複合材料,國立編譯館,(1995),pp. 3-15.
[26]邱政文,塑膠資訊,2期,pp. 47-48.
[27]張立德、張勁燕,奈米材料,五南圖書出版股份有限公司,(2002),pp. 63-73.
[28] T. Jesionowski, A. Krysztafkiewicz, Applied Surface Science, 172 (2001), pp. 18-32.
[29] J. Lin, J. A. Siddiqui, R. M. Ottenbrite, Polymers for Advanced Technologies, 12 (2001), pp. 285-292.
[30] Q. Liu, J. Ding, D. E. Chambers, S. Debnath, S. L. Wunder, G. R. Baran, Journal of Biomedical Material Research Part A, 57 (2001), pp. 384-393.
[31] J. H. Ohaver, J. H. Harwell, L. R. Evans, W. H. Waddell, Journal of Applied Polymer Science, 59 (1996), pp. 1427-1432.
[32] M. Fuji, T. Takei, T. Watanabe, M. Chikazawa, Colloids and Surface A: Physicochemical and Engineering Aspects, 154 (1999), pp. 13-24.
[33] M. W. Lee, X. Hu, L. Li, K. C. Tam, Composites Science and Technology, 63 (2003), pp. 339-346.
[34] C. M. Liauw, G. C. Lees, S. J. Hurst, R. N. Rothon, S. Ali, Composites Part A, 29A (1998), pp. 1313-1321.
[35] J. E. Mark, Y. C. Lee, P.A. Bianconi, Hybrid Organic-Inorganic Composites, Chapter 6.
[36]李世陽,化工資訊月刊,5 (2001) pp. 15-19.
[37] S. H. Kim, S. H. Ahn, T. Hirai, Polymer, 44 (2003), pp. 5625-5634.
[38] R. K. Goyal, Y. S. Negi, A. N. Tiwari, European polymer journal, 41 (2005), pp. 2034-2044.
[39] J. Sandlera, P. Wernerb, M. S. P. Shaffera, V. Demchukc, V. Altstadt, A. H. Windlea, Composites Part A, 33 (2002), pp. 1033-1039.
[40] Standard Test Methods for Tension Testing on Metallic Materials (metric) ASTM E8M-89.
[41] J. N. Hay, J. I. Langford, J. R. Lloyd, Polymer, 30 (1989), pp. 489-493.
[42] H. X. Nguyen, H. Ishida, Polymer Composites, 8 (1987), pp. 57-73.
[43] A. Morikawa, Y. Iyoku, M. Kakimoto, Y. Imai, Journal of Materials Chemistry, 2 (1992), pp. 679-689.
[44] M. C. Kuo, C. M. Tsai, J. C. Huang, M. Chen, Material Chemistry and Physics, 90 (2005), pp. 185-195.
[45] W. D. Callister, Jr, Materials Science and Engineering: An Introduction, 6th Edition, Wiley, NY, USA, (2003), pp 527-568.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code