Responsive image
博碩士論文 etd-0727106-144005 詳細資訊
Title page for etd-0727106-144005
論文名稱
Title
結合模擬退火法之改良式GML演算法於無線個人區域網路系統之訊號抵達時間估測
Modified GML Algorithm with Simulated Annealing for Estimation of Signal Arrival Time in WPAN Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-07
繳交日期
Date of Submission
2006-07-27
關鍵字
Keywords
無線個人區域網路、抵達時間、廣義最大概似演算法、模擬退火法
WPAN, simulated annealing, TOA, GML algorithm, IEEE 802.15.4
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本篇論文主旨在研究低速率無線個人區域網路系統之訊號抵達時間估測。在稠密的多重路徑環境裡,估測接收訊號的第一個抵達路徑所使用的估測演算法是以廣義最大概似(Generalized Maximum Likelihood, GML)演算法為主體,但GML演算法的運算需要很久的時間,有時甚至無法實現,勢必需要簡化架構,以遞迴的形式進行搜尋。設定兩臨界值參數做為演算法的停止機制,其中一個為搜尋路徑的抵達時間,另一個為搜尋路徑的衰減振幅。關於臨界值設定上,首先使用最小錯誤機率法,它利用誤判(false alarm)機率與遺失(miss)機率相加總合最小為原則來設定臨界值。在改善臨界值設定上的問題,利用均方根誤差統計法來實現,此改善方法將兩個臨界值在一個合適的範圍內變動,並計算每一次變動的均方根誤差值,再選擇最小均方根誤差所對應的臨界值做為演算法所需的臨界值。均方根誤差在模擬中所造成的非線性現象,將由結合模擬退火法的技術來改良,利用模擬退火法於非線性環境中良好的求解過程,解決每次須重新計算區域內每一個解後再找尋最佳解的問題。模擬結果顯示,當訊雜比在大於或等於4 dB後,提出的改善方式,相較於均方根誤差統計法,會有較佳的結果表現。
Abstract
The main purpose of this thesis is to estimate the signal arrival time in low rate wireless personal area network systems. In a dense multipath environment, the generalized maximum-likelihood (GML) algorithm can be used for the time-of-arrival (TOA) estimation. Nevertheless, the GML algorithm is very time-consuming and usually takes a long period of time, and sometimes fails to converge. Hence, a simplified scheme that would improve the algorithm is investigated. In the simplified scheme, the search is executed in a sequential form. Two threshold parameters are determined for the stop condition in the algorithm. One threshold is on the arrival time of estimated path, while the other is on the fading amplitude of estimated path. The determination of thresholds can be based on the minimum error probability, which is defined as the sum of the false alarm probability and the missing probability. Root-mean-square error statistics are used to improve the thresholds setting. In this scheme, candidate pairs of thresholds are evaluated in each appropriate range. To solve the problem that the root-mean-square error value for each pair of thresholds is calculated, the simulated annealing is adopted for searching the best threshold pair. The problem that all possible solutions in a large range must be evaluated can be solved by simulated annealing. From the simulation results, it is seen that, while the signal-to-noise ratio is larger or equal to 4dB, the proposed scheme can achieve better performance than the root-mean-square error statistics scheme.
目次 Table of Contents
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻探討及研究動機 1
1.3 論文架構 3
第二章 訊號抵達時間估測法及臨界值設定 4
2.1 室內環境之距離量測及定位 4
2.1.1 測距與定位觀念概述 4
2.1.2 雙向測距 5
2.2 訊號描述 7
2.2.1 訊號描述整理 7
2.2.2 IEEE802.15.4訊號之描述 10
2.3 訊號抵達時間估測法 15
2.3.1 互相關性演算法(Cross Correlation Algorithm) 15
2.3.2 廣義最大概似演算法(GML Algorithm) [12] 17
2.3.3 改良式廣義最大概似演算法(Modified GML Algorithm) [29] 21
第三章 臨界值設定及模擬退火法 24
3.1 最小錯誤機率法 24
3.1.1 通道統計特性 24
3.1.2 錯誤機率分析 26
3.2 均方根誤差統計法 29
3.3 模擬退火法 30
3.3.1 背景及原理介紹 30
3.3.2 適用於臨界值設定之退火流程 36
第四章 電腦模擬及分析 39
4.1 通道統計特性分析 39
4.2 最小錯誤機率法 42
4.3 均方根誤差統計法 54
4.4 模擬退火法於臨界值設定 62
4.5 訊雜比估測 65
第五章 結論及建議 69
附錄A 無線個人區域網路系統之簡介 71
A.1 無線個人區域網路 71
A.2 IEEE 802.15.4特色 71
A.2.1 低成本及低功率 71
A.2.2 操作頻帶及資料速率 72
A.3 IEEE 802.15.4a通道模型 73
參考文獻 81
參考文獻 References
[1] J. Zheng and M. J. Lee, “Will IEEE 802.15.4 make ubiquitous networking a reality?: A discussion on a potential low power, low bit rate standard,” IEEE Communications Magazine, vol. 42, pp. 140-146, June 2004.
[2] J. A. Gutierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in proceeding of 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004., vol. 3, pp. 1865 - 1869, Sept. 2004.
[3] IEEE 802.15.4 WPAN Task Group 4 (TG4), URL: http://ieee802.org/15/pub/TG4.html
[4] ZigBee Alliance, URL: http://www.zigbee.org/en/index.asp
[5] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, pp. 1553-1560, Oct. 1988.
[6] D. W. Tufts, H. Ge, and S. Umesh, “Fast maximum likelihood estimation of signal parameters using the shape of the compressed likelihood function,” IEEE Journal of oceanic engineering, vol. 18, pp. 388-400, Oct. 1993. 1993.
[7] H. Saarnisaari, “ML time delay estimation in a multipath channel,” in proceeding of IEEE ISSSTA, vol. 3, pp. 1007-1011, Sept. 1996.
[8] P. P. Moghaddam, H. Amindavar, and R. L. Kirlin, “A new time-delay estimation in multipath,” IEEE Transations on Signal Processing, vol. 51, pp. 1129-1142, May 2003.
[9] T. G. Manickam, R. J. Vaccaro, and D. W. Tufts, “A least-squares algorithm for multipath time-delay estimation,” IEEE Transactions on Signal Processing, vol. 42, pp. 3229-3233, Nov. 1994.
[10] S. M. Kay, Fundamentals of statistical signal processing : estimation theory, Prentic Hall, 2nd ed., 1993.
[11] H. T. Li and P. M. Djuric, “MMSE parameter estimation of multiple chirp signals,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2606-2609, May 1996.
[12] J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE Journal on Selected Areas in Communications, vol. 20, pp. 1677 - 1683, December 2002.
[13] D. Leeper, A. Batra, V. Brethour, B. Huang, E. Sabribania, S. Sato, G. Shor, and A. Tewfik, “Ranging with MB-OFDM,” IEEE 802.15-04/050r0, Multi-band OFDM Alliance, Sept. 2003.
[14] R. Fantacci, S. Morosi, and S. Villano, “Double-threshold selective PIC receiver for CDMA communications in multipath fading channel,” in proceeding of IEEE VTS 53rd Vehicular Technology Conference, vol. 3, pp. 1839-1843, May 2001.
[15] IEEE 802.15 Work Group for WPAN, URL: http://www.ieee802.org/15/
[16] R. F. Heile, J. D. Allen, P. W. Kinney, M. D. McInnis, I. C. Gifford, S. J. Shellhammer, J. R. Barr, P. Jamieson, J. A. Gutierrez, M. Naeve, M. Bourgeois, S. Moridi, G. Breen, E. Callaway, P. Gorday, D. Cypher, R. Poor, and F. Dacus, “Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),” LAN/MAN Standards Committee of the IEEE Computer Society, Oct. 2003.
[17] S. Gezici, T. Zhi, G. B. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor network,” IEEE Signal Processing Magazine, vol. 22, pp. 70-84, July 2005.
[18] A. Molisch, F. Chin, Y. H. Kim, M. Welborn, and J. Lampe, “UWB PHY proposal for IEEE 802.15.4a alt-PHY project,” IEEE 802.15-05-0172-03-004a, MERL et al., Mar. 2005.
[19] K. H. Kim, S. Choi, Y. Park, H. M. Oh, Y. Shin, W. C. Lee, and H. I. Jeon, “Enhanced noncoherent OOK UWB PHY and MAC for positioning and ranging,” IEEE 15-05-0033-00-004a, Korea Electrotechnology Research Institute et al., Jan. 2005.
[20] A. F. Molisch, K. Balakrishnan, C. C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE 802.15.4a channel model - final report,” IEEE 802.15-04/662r0, Nov. 2004.
[21] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, pp. 128-137, Feb. 1987.
[22] F. Chin, “Proposed code sequences, modulation coding for IEEE 802.15.4a alt-PHY,” IEEE 802.15-05-0032-01-004a, Institute for Infocomm Research, Singapore, Jan. 2005.
[23] M. Z. Win, R. A. Scholtz, and M. A. Barnes, “Ultra-wide bandwidth signal propagation for indoor wireless communications,” in proceeding of 1997 IEEE International Conference on Communications, 1997. ICC 97 Montreal, vol. 1, pp. 56-60, June 1997.
[24] J. T. McClave, P. G. Benson, and T.Sincich, Statistic for business and economics. 7th ed., Prentic Hall, 1998.
[25] N. Metropolis, et al., “Equations of Calculation by Fast Computing Machines,” Journal of Chemical Physics, pp. 1087-1092, 1953.
[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.
[27] J. Y. Lee, Ultra-wideband Ranging in Dense Multipath Environments. PhD thesis, University of Southern California, May 2002.
[28] W. C. Tsai, “Generalized Maximum-Likelihood Algorithm for Time Delay Estimation in UWB Radio,” Master’s thesis, Department of Electrical Engineering of National Sun Yat-sen University, July 2004.
[29] C. D. Wann and S. W. Yang, “Modified GML Algorithm for Estimation of Signal Arrival Time in UWB Systems,” in proceedings of IEEE Globecom 2006, Nov. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.86.138
論文開放下載的時間是 校外不公開

Your IP address is 3.144.86.138
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code