Responsive image
博碩士論文 etd-0727106-144838 詳細資訊
Title page for etd-0727106-144838
論文名稱
Title
微機電製程應用於薄膜體聲波元件之研究
Fabrication of Thin Film Bulk Acoustic Device Using MEMS Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-07-27
關鍵字
Keywords
氮化鋁、薄膜體聲波共振器、微機電
KOH, FBAR, AlN, RIE, MEMS
統計
Statistics
本論文已被瀏覽 5729 次,被下載 8119
The thesis/dissertation has been browsed 5729 times, has been downloaded 8119 times.
中文摘要
本研究包含薄膜體聲波諧振器之製程探討及元件製作,薄膜體聲波諧振器之結構為金屬電極/壓電層/金屬電極/氮化矽,其中金屬電極、壓電層及氮化矽分別使用直流濺鍍系統、射頻磁控濺鍍系統及低壓化學氣相沉積系統製備,並利用KOH、ICP及RIE蝕刻元件背部空腔,探討各種不同蝕刻製程對元件製作成本及良率之影響。
本研究使用X光繞射儀鑑定薄膜之晶向,輔以掃描式電子顯微鏡觀察薄膜正面及剖面型態,使用網路分析儀量測諧振器之諧振頻率。
研究結果顯示,以低壓化學氣相沉積系統製備之1500 Å氮化矽薄膜具有最佳蝕刻遮罩效果,且搭配RIE作兩階段蝕刻可得到最佳元件良率;AlN壓電層的研究結果顯示,氮氣濃度25%、濺鍍功率200 W及濺鍍壓力3 mtorr時,具有最佳之C軸優選取向。
Abstract
This study is to develop the manufacturing processes of thin film bulk acoustic device by MEMS technology, including lithography, wet etching, dry etching and rf Magnetron sputtering.LPCVD is used to deposit SiNx as the membranes and mask for etching of silicon wafer. The electrodes of molybdenum metal (Mo) and piezoelectric layer of aluminum nitride (AlN) on top side are prepared by dc and rf sputtering,respectively. The acoustic cavity on back side is achieved by 30%wt 100℃ KOH solution and reactive ion etching (RIE).
In this study, the crystallography of the coated films was analyzed by X-ray diffraction. The surface and cross-sectional morphologies of AlN films were investigated by electron microscope. The piezoelectric layer of AlN thin film prepared by rf magnetron sputtering shows the highly c-axis preferred orientation and fine morphology under the optimal sputtering parameters of rf power of 200W, sputtering pressure of 3 mTorr, substrate temperature of 400℃ and nitrogen concentration of 25%. The frequency responses of fabricated FBAR devices are evaluated using the Hewlett-Packard 8720-ET network analyzer.
Moreover, the optimal thickness of 1500Å SiNx film prepared by LPCVD revealed the excellent masking effect and non-stress for membrane. The yield for the fabrication of acoustic cavity is maximum of 85% can be achieved by using the combined etching steps of wet and dry etching.
目次 Table of Contents
目錄
摘要 Ⅰ
目錄 Ⅲ
圖表目錄 Ⅵ
第一章 前言 1
第二章 理論分析 5
2.1 壓電理論 5
2.2 壓電效應 6
2.3 反應性射頻磁控濺鍍原理 7
2.3.1 輝光放電 7
2.3.2 磁控濺射 8
2.3.3 射頻濺射 8
2.3.4 反應性濺射 9
2.4 AlN 結構與特性 10
2.5 矽基板蝕刻 11
2.5.1 非等向性濕式蝕刻 11
2.5.2 乾式蝕刻 14
2.6 FBAR 之結構與原理 15
2.7 FBAR 之參數性質 16
2.7.1 Kt2,eff之測量 16
2.7.2 Q之測量 17
第三章 實驗 18
3.1 基板之清洗 18
3.2 射頻賤鍍系統與薄膜沉積 19
3.3 直流濺渡系統與薄膜沉積 20
3.4 黃光微影製程 21
3.5 蝕刻製程 21
3.6 X光繞射(X-Ray Diffraction, XRD)分析 22
3.7 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)
23
3.8 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 23
3.9 FBAR的製作 24
3.9.1 支撐層及蝕刻終止層的製作 24
3.9.2 壓電層之製作 24
3.9.3 背部空腔蝕刻 26
3.10 元件測量 26
第四章 實驗結果與討論 27
4.1 蝕刻製程之探討 27
4.1.1 濕蝕刻製程探討 27
4.1.2濕蝕刻製程對元件之影響 30
4.2 乾蝕刻製程探討 30
4.2.1 ICP製程探討 30
4.2.2 RIE製程探討 31
4.3 電極與晶種層之探討 31
4.4 壓電層之探討 33
4.4.1 射頻賤鍍功率之影響 33
4.4.2 射頻賤鍍壓力之影響 33
4.4.3 氮氣濃度之影響 34
4.4.4 顯影液對氮化鋁薄膜之影響 35
4.4.5 不同基板結構對氮化鋁薄膜之影響 35
4.5 FBAR 元件諧振響應量測 36
第五章 結論 37
參考文獻 38

圖表目錄
圖1-1 FBAR元件之(a)側視面,(b)上視圖 44
圖1-2 體聲波元件之類型 45
圖2-1 壓電效應 46
圖2-2 直流輝光放電結構與電位分佈圖 47
圖2-3 平面型圓形磁控之結構圖 48
圖2-4 平面磁控放電之剖面圖 48
圖2-5 反應性濺射之模型 49
圖2-6 AlN之晶體構造 50
圖2-7 不同晶格之矽晶圓所蝕刻出的凹槽 51
圖2-8 不鏽鋼夾具保護元件示意圖 51
圖2-9 反應離子式蝕刻法示意圖 52
圖2-10 感應偶合式電漿蝕刻機示意圖 52
圖3-1 射頻磁控濺鍍系統 53
圖3-2 直流磁控濺鍍系統 54
圖3-3 射頻磁控濺鍍系統操作之流程圖 55
圖3-4 FBAR製作流程圖 56
圖3-5 舉離法 57
圖4-1 不同規格基板經KOH蝕刻後樣品 58
圖4-2 不同濃度之蝕刻溶液對蝕刻時間及蝕刻速率的關係圖 59
圖4-3 不同溫度之蝕刻溶液對蝕刻時間及蝕刻速率的關係圖 60
圖4-4 以LPCVD沉積1500Å SiNX薄膜,經100℃ 30%wt KOH蝕刻溶液蝕刻後之晶片正、反面及剖面圖 61
圖4-5 反應離子式蝕刻對SiNX薄膜之蝕刻時間與蝕刻深度關係圖 62
圖4-6 (a)感應偶合式電漿蝕刻Si之時間與蝕刻深度關係圖(b)感應偶合式電漿蝕刻空腔剖面圖 63
圖4-7 (a)反應性離子刻對Si之蝕刻時間與蝕刻深度關係圖(b)反應性離子蝕刻蝕刻空腔剖面圖 64
圖4-8 (a)反應性離子蝕刻法蝕刻空腔後元件正面圖(b)反應性離子蝕刻法蝕刻背部空腔圖 65
圖4-9 鉬電極沉積於不同Ti晶種層厚度之AFM圖 66
圖4-10 不同Ti晶種層厚度與鉬電極之粗糙度關係圖 67
圖4-11 不同Ti晶種層厚度對Mo/Ti片電阻之關係圖 68
圖4-12 不同Ti晶種層厚度對Mo/Ti之磷酸容忍性 69
圖4-13 不同濺度功率下,氮化鋁薄膜之XRD圖(固定參數為
3 mtorr,400℃,2hr,25%) 70
圖4-14 不同濺度功率下,氮化鋁之rocking curve量測圖(固定參數為 3 mtorr,400℃,2hr,25%) 71
圖4-15 不同濺度功率下,氮化鋁之AFM量測圖(固定參數為
3 mtorr,400℃,2hr,25%) 72
圖4-16 不同濺度功率下,氮化鋁薄膜表面之SEM量測圖(固定參數為 3 mtorr,400℃,2hr,25%) 73
圖4-17 不同濺度功率下,氮化鋁薄膜剖面之SEM量測圖(固定參數為 3 mtorr,400℃,2hr,25%) 74
圖4-18 不同濺度壓力下,氮化鋁薄膜之XRD圖(固定參數為
200W,400℃,2hr,25%) 75
圖4-19 不同濺度壓力下,氮化鋁薄膜之rocking curve量測圖(固定參數為 200W,400℃,2hr,25%) 76
圖4-20 不同濺度壓力下,氮化鋁薄膜之AFM量測圖(固定參數為200W,400℃,2hr,25%) 77
圖4-21 不同濺度壓力下,氮化鋁薄膜表面之SEM量測圖(固定參數為 200W,400℃,2hr,25%) 78
圖4-22 不同濺度壓力下,氮化鋁薄膜剖面之SEM量測圖(固定參數為 200W,400℃,2hr,25%) 79
圖4-23 不同氮氣濃度下,氮化鋁薄膜之XRD圖(固定參數為
3 mtorr,200W,400℃,2hr,) 80
圖4-24 不同氮氣濃度下,氮化鋁薄膜之AFM量測圖(固定參數為
3 mtorr,200W,400℃,2hr,) 81
圖4-25 不同氮氣濃度下,氮化鋁薄膜表面之SEM量測圖(固定參數為 3 mtorr,200W,400℃,2hr,) 82
圖4-26 不同氮氣濃度下,氮化鋁薄膜剖面之SEM量測圖(固定參數為 3 mtorr,200W,400℃,2hr,) 83
圖4-27 AlN薄膜浸泡於顯影液(AZ300)中,於不同時間下之SEM量測圖;(a)0sec, (b)5sec, (c)10sec, (d)15sec, (e)20sec 84
圖4-28 氮化鋁薄膜沉積於不同基板上之XRD圖(固定參數為 3 mtorr,25%,200W,400℃,2hr) 85
圖4-29 氮化鋁薄膜沉積於不同基板上之AFM量測圖(固定參數為
3 mtorr,25%,200W,400℃,2hr,) 86
圖4-30 氮化鋁薄膜沉積於不同基板上之表面SEM量測圖(固定參數為3 mtorr,25%,200W,400℃,2hr,) 87
圖4-31 氮化鋁薄膜沉積於不同基板上之剖面SEM量測圖(固定參數為 3 mtorr,25%,200W,400℃,2hr,) 88
圖4-32 以兩階段蝕刻法所製作之FBAR元件量測結果 89

表一 常用之壓電材料 90
表二 AlN材料之一些基本特性 90
表三 各種蝕刻液成分及其適用之蝕刻罩幕 91
表四 反應性射頻濺鍍系統沈積氮化鋁薄膜之系統參數 91
表五 直流濺鍍系統沈積鉬薄膜之系統參數 92
表六 JCPDS datas of AlN powder 92
表七 不同蝕刻終止層基板規格 93
表八 反應離子式蝕刻之系統參數 93
表九 感應偶合式電漿之系統參數 94
表十 不同蝕刻製程特性表 94
參考文獻 References
[1]S. H. Lee, K. H. Yoon and J. K. Lee, “Influence of Electrode Configurations on the Quality Factor and Piezoelectric Coupling Constant of Solidly Mounted Bulk Acoustic Wave Resonators”, J. Appl. Phys., vol. 92, pp. 4062-4069, 2002.
[2]M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”,2004.
[3]H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[4]T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, 2002 IEEE Ultrasonic Symposium, pp. 945-948,2002.
[5]R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp. 981-983,2002.
[6]K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W. Andrus, “Bulk Acoustic Wave Resonators And Filters for 2GHz”, MTT-S, pp. 1487-1490, 2002 .
[7]K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol. 43, pp. 5510-5515, 2004.
[8]P. B. Kirby, M.D.G. Potter, C. P. Williams and M.Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[9]C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[10]R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[11]S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” , J. Vac. Sci. Technol. A 21, pp. 1-5, 2003.
[12]B. P. Otis, J. M. Rabaey, “A 300um 1.9GHz COMS oscillator Utilizing Micromachined Resonators,” IEEE Journal of Solid-State Circuits, vol.38, pp.1271-1274, 2003.
[13]P. Bradley, R. Ruby, J. D. Larson III, Y. Oshmyansky, D. Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications,” IEEE MTT-S Digest, pp.367-370, 2001.
[14]R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin Film Bulk Acoustic Resonators for Wireless Applications,” IEEE Ultrasonics. Symp, pp.813-821, 2001.
[15]D. H. Kim, M. Y. D. Chai, G. Yoon, “Improvements of Resonance Characteristics Due to Thermal Annealing of Bragg Reflectors in ZnO-based FBAR Devices,” Electronics Letters, vol.39, No.13, 2003.
[16]T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5GHz,” IEEE Ultrasonics Symposium, pp.969-972, 2002.
[17]S.H. Park, B.C. Seo, H.D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications,” Jpn. J. Appl. Phys., 39, pp.4115-4119, 2000.
[18]R. Ruby, P. Bradley, J.D. Larson and Y. Oshmyansky, “PCS 1900MHz Duplexer Using Thin Film Bulk Acoustic Resonators” Electron. Lett., 35, pp.794-795,1999.
[19]J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900MHz PCS Band ,”IEEE Ultrasonics Symposium,pp.869-874, 2000.
[20]K.W. Tay, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators,” Jpn. J. Appl. Phys., vol. 43, pp.5510-5515, 2004.
[21]W.E. Newell, “Face-Mounted Piezoelectric Resonators”, Proc. IEEE, vol. 53, pp. 575-581, 1965.
[22]K.M. Lakin, “Development of Miniature Filters for Wireless Applications,” IEEE Trans. On Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[23]M.A. Dubois, “Thin Film Bulk Acoustic Wave Resonators: a Technology-Overview”, Memswave 03, France, 2003.
[24]H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp. 3455–3457, 2002.
[25]K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, 1998 IEEE International Freq. Con. Symp., pp. 876-881,1998.
[26]H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[27]S. H. Park, B. C. Seo, H. D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Jpn. J. Appl. Phys., vol. 39, pp. 4115-4119, 2000.
[28]R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE trans.on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 292-296, 2000.
[29]K. M. Lakin, “Thin Film Resonator Technology”, IEEE International Frequency Control symposium, pp. 765-778, 2005.
[30]K. M. Lakin, “Thin Film Resonator and Filters”, IEEE International Frequency Control Symposium, pp. 895-906, 2005.
[31]S. H. Kim, J. H. Kim, H. D. Park and G. Yoon, “AlN-Based Film Bulk Acoustic Resonator Devices with W/SiO2 Multilayers Reflector for RF Bandpass Filter Application”, J. Vac. Sci. Technol. B, vol. 19, pp. 1164-1169, 2001.
[32]S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, 2002 IEEE International Frequency Control Symposium, pp.45-49, 2002.
[33]S. H. Lee, J. K. Lee and K. H. Yoon, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators”, J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[34]M. A. Dubois and P. Muralt, “Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering”, J. of App. Phys., vol. 89, pp. 6389-6395, 2001.
[35]M. Akiyama, K. Nagao, N. Ueno, H. Tateyama and T. Yamad, “Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films”, Vacuum, vol. 74, pp. 699-703, 2004.
[36]吳朗,“電子陶瓷:壓電陶瓷”,全欣圖書公司,1994.
[37]施敏著,張俊彥譯,“半導體元件之物理與技術”,儒林,p425,1990.
[38]R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, pp. 201, 1980.
[39]J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134, 1991.
[40]E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, 1991.
[41]王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所,碩士論文,1995 。
[42]蔡家龍,“製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所,碩士論文,2000。
[43]歐天凡,“沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所,碩士論文,2004。
[44]廖秋風,“氮化物粉體”,材料與社會,vol. 40,pp. 59-67, 1990.
[45]D. C. Bertolet, H. Liu and J. W. Rogers, J. Appl. Phys., vol. 75, pp. 5385-5390, 1994.
[46]S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh, “Reactive molecular beam epitaxy of aluminium nitride” J. Vac. Sci. Technol., vol. 16, pp. 990-993, 1979.
[47]顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,vol. 73,pp. 45-46, 1993.
[48]J. Zelenka, “Piezoelectric Resonator and Their Applications,” Elsevier Science Publishing Co. Inc., pp.64-85, 1986.
[49]劉永宏,“氮化鋁薄膜塊體聲波共振器分析與研製” ,國立成功大學電機工程研究所,碩士論文,2005。
[50]林善盟,“以氮化鋁為壓電材料之薄膜型塊體聲波諧振器” ,國立成功大學電機工程研究所,碩士論文,2003。
[51]H. Tanaka, S.Yamashita, M. Shikida, and K. Sato; Sensors and Actuators A ,vol.114,pp. 516-520, 2004.
[52]I. Zubel, and M. Kramkowska : Sensors and actuators A ,vol.115,pp.549-556, 2004.
[53]T. R. Hsu, Mems & Microsystems Design and Manufacture. McGraw-Hill International Edition, 2002
[54]H. C. Lee, J. Y. Park, K. H. Lee, and J. U. Bu, J. Vac. Sci. Technol. B,pp1127-1133, 2004.
[55]魏清梁,固態微型諧振器之壓電層與反射層研製,國立中山大學電機工程研究所,碩士論文,2005.
[56]S. B. Krupanidhi and M. Sayer,”Position and Pressure Effects in RF Magnetron Reactive Sputter Deposition of Piezoelectric Zinc Oxide” ,J.Appl.Phys.,vol. 56,pp. 3308,1984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code