Responsive image
博碩士論文 etd-0727106-150956 詳細資訊
Title page for etd-0727106-150956
論文名稱
Title
摩擦攪拌銲接過程之作用力和攪拌能量之實驗研究
Experiment Studies of Acting Force and Stirring Energy in Friction Stir Welding Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-22
繳交日期
Date of Submission
2006-07-27
關鍵字
Keywords
摩擦攪拌銲接、鋁合金、三分力曲線
Three components of the forces curve, Friction stir welding, Aluminum alloy
統計
Statistics
本論文已被瀏覽 5622 次,被下載 2540
The thesis/dissertation has been browsed 5622 times, has been downloaded 2540 times.
中文摘要
本研究主要探討摩擦攪拌銲接之基本機制,亦即建立摩擦攪拌銲接三分力及攪拌能量的變化與材料接合特性的關係。本研究使用邱教授等人所研製之具有可精確量測接合過程之垂直軸向力(Z)、接合方向的進給力(X)以及夾緊方向力(Y)等三分力之摩擦攪拌銲接動力計,同時藉由伺服馬達之功率計來觀察攪拌頭之輸出能量。實驗結果發現在一定主軸轉速下,隨著進給速度提升,進給力明顯升高,但軸向力少許升高,而銲接所需之能量幾乎保持一定值。
在主軸轉速800 rpm、主軸傾角1°、固定夾緊力2 kN及進給速度60 mm/min的條件下,探針壓入試片但軸肩未接觸觸試片表面時,進給力約為1 kN左右;再設定探針完全壓入試片而軸肩輕接觸試片表面時,則進給力降低至0.48 kN;再設定軸肩重接觸試片表面時,則進給力再降低至0.2 kN。由此得知,軸肩的接觸是使軟化材料緊密回填至銲道,以及使進給力降低。
依上述之條件對6061-T6鋁合金進行銲接,再進行微硬度分析得知,自銲接起始點各處之硬度分佈,其變化趨勢相當一致,銲道表面也相當細緻,因此銲接過程中之進給力平穩維持於0.2 kN可得到較高且較為均勻之銲接品質。而銲道表面之波峰間距與進給速度成正比,但與攪拌頭轉速成反比,此量測結果與理論預測值相當接近。
Abstract
In this study, the fundamental mechanism of friction stir welding was investigated to establish the relationship among the three components of the forces acting on the work pieces, the variation of the stirring energy, and the joint characteristics of the materials. A dynamometer designed by Chiou et al., was used to measure the axial force (z-direction), the feed force (x-direction), and the clamping force (y-direction). The output energy of servo motor was monitored by power meter. Experimental results show that with increasing welding speed, the feed force increases obviously, the axial force increases slightly, and the energy almost remains constant for the fixed rotation speed of the spindle.
At the rotation speed of spindle of 800 rpm, the spindle angle of 1°, the pre-clamping force of 2kN and the welding speed of 60 mm/min, results show that the feed force is about 1kN when the probe is plunged into the specimens but the shoulder does not be in contact with the surface of the specimen. However, when the probe is plunges into the specimens entirely and the shoulder is in contact with the surface slightly, the feed force is reduced to 0.48kN. Moreover, when the shoulder is in contact with the surface heavily, the feed force is reduced to 0.2kN. This result indicates that the contact force between the shoulder and the specimen causes the material to become soft and to backfill into the weld, and then decreases the feed force.
After the specimen of the 6061-T6 aluminum has been welding, the micro hardness measurements are made. Results show that the distribution of the hardness is quite consistent along the welding as the feed force approaches to 0.2kN. Furthermore, the appearance on the surface of the weld is quite fine, and thereby it is able to get the high and uniform quality. The spacing distance of the weld surface can be theoretically analyzed. It is found that the spacing distance increases with welding speed and decreases with rotation speed of spindle. The theoretical predictions are in very good agreement with the experimental measurements.
目次 Table of Contents
封面 i
學位論文審定書 ii
謝誌 iii
總目錄 iv
圖目錄 viii
表目錄 xv
中文摘要 xvi
英文摘要 xvii
第一章 緒論 1
1-1 前言 1
1-2 研究動機、目的及重要性 4
1-2-1 研究動機 4
1-2-2 研究目的及重要性 10
1-3 文獻回顧 11
1-3-1 材料接合型式 12
1-3-2 攪拌頭之設計 13
1-3-3 攪拌頭傾斜角度 15
1-3-4 銲接材料及接合特性分析 15
1-3-5 攪拌頭磨耗現象 16
1-3-6 力的分析及量測 18
1-4 本論文重點 21
1-5 本論文架構 21
第二章 實驗設備與方法 22
2-1 實驗設備之研製及架設 22
2-1-1 動力計之研製 22
2-1-2 實驗設備之架設 24
2-1-3 力量量測系統配線 26
2-2 實驗試片之材料特性 27
2-3 試片之幾何形狀 29
2-4 攪拌頭之設計 30
2-4-1 攪拌頭之材質選用 30
2-4-2 攪拌頭之幾何形狀設計 31
2-5 背部墊板之選用及裝置 32
2-6 實驗方法 33
2-6-1 實驗參數規劃 33
2-6-2 試片前處理 34
2-6-3 實驗步驟 35
2-7 銲道顯微組織觀察 36
2-8 微硬度試驗 38
2-9 摩擦攪拌銲接基本機制之探究方法 40
2-10 銲道表面波峰間距量測 42
2-11 研究流程 42
第三章 實驗結果與討論 44
3-1 銲接過程之三分力變化 44
3-2 進給速度對進給力與軸向力之影響 55
3-3 進給速度與攪拌能量之關係 55
3-4 銲道之顯微組織 59
3-5 銲道之硬度分佈 64
3-6 摩擦攪拌銲接之基本機制 73
3-6-1 探針對材料造成之影響 73
3-6-2 軸肩對材料造成之影響 75
3-6-3 軸肩未接觸及輕接觸試片表面之受力情形 78
3-7 銲道表面波峰分析 83
3-7-1 銲道表面波峰之形成機制 83
3-7-2 波峰之間距 84
3-7-3 波峰間距之量測 86
第四章 結論與未來研究方向 90
4-1 結論 90
4-2 未來研究方向 93
參考文獻 94
參考文獻 References
[1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Drawes, “Friction Stir Butt Welding”, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, Oct., 1995.
[2] W. M Thomas, E. D. Nicholas, R. E. Dolby, C. J. Jones, R. H. Lilley, “Friction Plug Extrusion”, International Patent PCT/GB92/01540.21.8.92.
[3] 林榮立(指導教授呂傳盛、程金保),〝摩擦攪拌銲接製程參數對5083-O鋁合金接合性質之影響〞,國立臺灣師範大學工教系碩士論文,2004.06。
[4] 程金保,〝鋁鋰合金摩擦攪拌銲接性質之可靠度研究(Ⅰ)〞,國科會研究計畫成果報告,NSC-91-2216-E-003-002,2003。
[5] K. V. Jata, K. K. Sankaran, J. J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7075-T7451”, Metallurgical and Materials Transactions, Vol. 31A, 2000, pp.2181-2192.

[6] M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingel, “Properties of friction-stir-welded 7075 T651 aluminum”, Metallurgical and Material Transaction, Vol. 29A, 1998, pp.1955-1964.
[7] K. J. Colligan, J. J. Fisher, E. J. Gover, J. R. Pickens, “Friction stir welding in the AAAV”, Advanced Material and Processes, Vol. 160, Issue 9, 2002, pp.39-41.
[8] M. Ericsson, R. Sandstrom, “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG”, International Journal of Fatigue, Vol. 25, Issue 23, 2003, pp.1379-1387.
[9] D. Wang, S. Liu, Z. Cao, “Study of friction stir welding of aluminum”, Journal of Materials Science, Vol. 39, Issue 5, 2004, pp.1689-1693.
[10] T. Boon, W. M. Thomas, P. Temple-Smith, “Friction welding apparatus and method”, US Patent, US 6 325 273 B1, Dec. 2001.
[11] J. A. Esparza, W. C. Davis, E. A. Trillo, L. E. Murr, “Friction-stir welding of magnesium alloy AZ31B”, Vol. 21, Issue 12, 2002, pp.917-920.


[12] H. S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, “Microstructures and mechanical properties of friction stir welds of 60%Cu - 40%Zn copper alloy”, Materials Science and Engineering A, Vol. 371, 2004, pp.160-169.
[13] W. B. Lee, C. Y. Lee, W. S. Chang, Y. M. Yeon, S. B. Jung, “Microstructural investigation of friction stir welded pure titanium”, Materials Letters, Vol. 59, 2005, pp.3315-3318.
[14] A. P. Reynolds, W. Tang, M. Posada and J. DeLoach, “Friction stir welding of DH36 steel”, Science and Technology of Welding and Joining, Vol. 8, No. 6, 2003, pp.455-461.
[15] C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C. Bampton, ”Effects of friction stir welding on microstructure of 7075 aluminum”, Scripta Materlia, Vol.36, No. 1, 1997, pp.69-75.
[16] G. Liu, L. E. Murr, C-S. Niou, J. C. McClure and F. R. Vega, “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum”, Scripta Materlia, Vol. 37, No. 3, 1997, pp.355-361.


[17] Y. S. Sato, H. Kokawa, M. Enomoto and S. Jogan, “Microstructural evolution of 6063 aluminum during friction-stir welding”, Metallurgical and Materials Transaction, Vol. 30A, 1999, pp.2429-2437.
[18] K. V. Jata and S. L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta Materlia, Vol. 43, 2000, pp.743-749.
[19] N. Saito and I. Shigematsu, “Grain refinement of 1050 aluminum alloy by friction stir processing”, Journal of Materials Science Letters, Vol. 20, Issue 20, 2001, pp.1913-1915.
[20] Y. S. Sato and H. Hokawa, “Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum”, Metallurgical and Materials Transaction, Vol. 32A, 2001, pp.3023-3031.
[21] Y. S. Sato, S. H. C. Park and H. Kokawa, “Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys”, Metallurgical and Materials Transaction, Vol. 32A, 2001, pp.3033-3042.


[22] Y. S. Sato, M. Urata, H. Kokawa and K. Ikeda, “Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys”, Materials Science and Engineering A, Vol. 354, 2003, pp.298-305.
[23] W. B. Lee, Y. M. Yeon and S. B. Jung, “The improvement of mechanical properties of friction-stir-welded A356 Al alloy”, Materials Science and Engineering A, Vol. 355, 2003, pp.154-159.
[24] C. J. Dawes, W. M. Thomas, “Friction stir process welds aluminum alloys”, Welding Journal, Vol. 75, Issue 3, 1996, pp.41-45.
[25] O. T. Midling, E. J. Morley, and A. Sandvik, “Friction stir welding”, European Patent Specification, EP 0 752 926 B1, 1995.
[26] W. M. Thomas, K. I. Johnson and C. S. Wiesner, “Friction stir welding-recent developments in tool and process technologies”, Advanced Engineering Materials, Vol. 5, No. 7, 2003, pp.485-490.




[27] W. M. Thomas, D. G. Staines, E. D. Nicholas and P. Evans, “Reversal stir welding- Re-StirTM- preliminary trials”, Published on the Internet 23rd, TWI, Retrieved from http://www.twi.co.uk/j32k/unprotected/pdfs/spwmtjan2003.pdf, 2003.
[28] W. M. Thomas, E. D. Nicholas, J. C. Needham, P. Temple-Simth, S. W. Kallee, and C. J. Dawes, “Friction stir welding”, UK Patent Application, GB 2 306 366 A, 1997.
[29] W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “Feasibility of friction stir welding steel”, Science and Technology of Welding and Joining, Vol. 4, No. 6, 1999, pp.365-372.
[30] R. A. Prado, L. E. Murr, D. J. Shindo, K. F. Soto, “Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study”, Scripta Materlia, Vol. 45, 2001, pp.75-80.
[31] R. A. Prado, L. E. Murr, K. F. Soto and J. C. McClure, “Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC”, Material Science and Engineering A, Vol. 349, 2003, pp.156-165.

[32] G. E. Cook, H. B. Smartt, J. E. Mitchell, A. M. Strauss, and R. Crawford, “Controlling robotic friction stir welding”, Welding Journal, Vol. 82, 2003, pp.28-34.
[33] G. E. Cook, R. Crawford, D. E. Clark, and A. M. Strauss, “Robotic friction stir welding” Industrial Robot, Vol. 31, No. 1, 2004, pp.55-63.
[34] V. Soundararajan, S. Zekovic, R. Kovacevin, “Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061”, Machine Tools and Manufacture, Vol. 45, 2005, pp.1577-1587.
[35] 張維麟(指導教授敖仲寧),〝6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究〞,國立中正大學機械所碩士論文,2005.07。
[36] P. Ulysse, “Three-dimensional modeling of the friction stir-welding process”, Machine Tools and Manufacture, Vol. 42, 2002, pp.1549-1557.
[37] 王大勇、馮吉才,〝攪拌摩擦銲銲縫表面弧形紋形成模型〞,焊接學報,24卷5期,2003年,42-44頁。
[38] K. N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering A, Vol. 327, 2002, pp.246-251.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code