Responsive image
博碩士論文 etd-0727106-181734 詳細資訊
Title page for etd-0727106-181734
論文名稱
Title
使用LHPG法提拉二氧化矽光子晶體光纖
Drawing of silica photonic crystal fiber by LHPG method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-25
繳交日期
Date of Submission
2006-07-27
關鍵字
Keywords
光子晶體光纖
photonic crystal fiber, LHPG, hole collapse
統計
Statistics
本論文已被瀏覽 5682 次,被下載 3243
The thesis/dissertation has been browsed 5682 times, has been downloaded 3243 times.
中文摘要
在半導體材料中,由於晶格週期性的排列形成了週期性變化的電位能,產生電子能隙;極為相似的,1987年Yablonovitch與John在Physical Review Letter不約而同的發表其開創性的發現,即經由介電材料週期性的排列也能形成光能隙,而這樣的結構稱之為光子晶體,此一創新的概念,帶動了往後二十年在此領域中的蓬勃發展,藉由光子晶體的架構與概念也開發出許多創新的應用,諸如:光波導、左手材料、光波減速、光暫存器等。

傳統光纖利用全反射的原理使光侷限在纖心傳導,而在西元1996年由Russel等人發展出具有光子晶體纖衣的光纖,以全新的物理機制導光,稱之為光子晶體光纖;光子晶體光纖可粗略分為兩大類,即等效折射率傳導光纖與光子能隙傳導光纖,兩種光纖同樣具有二維週期性結構,並在其中心設計有結構缺陷,使光以特殊的缺陷模態傳導。

本實驗使用雷射加熱基座生長法(LHPG)提拉週期性排列的玻璃毛細管陣列,形成二維週期性微結構,即光子晶體光纖;若在生長時經由雷射功率、生長速度的週期性變化,增加光纖在第三維方向上的週期性變化,亦可形成三維光子晶體。由於提拉過程中毛細管會因為表面張力而迅速萎縮,因此論文中探討表面張力造成的影響,以及為了因應此現象而設計的正壓裝置;此外,以LHPG法提拉時,雷射功率穩定度對光纖直徑起伏影響很大,論文中也介紹了為使雷射功率更加穩定而設計的功率回授系統。最後討論光子晶體光纖的電子顯微影像與光學實驗量測,以及未來的展望。
Abstract
Semiconductor has electronic bandgap because of the periodic potential barriers. Similarly, as shown in Yablonovitch and John’s original idea in 1987, and the optical bandgap can be formed by arranging the dielectric material periodically, named photonic crystal. The innovation promotes vigorous development in the last twenty years. Many applications were discovered by using the idea of photonic crystal, such as waveguide, left-hand material, slow light, optical register, etc.

Conventional fibers guide light in the core by the total internal reflection principle, but Russel and co-workers demonstrated fibers with a so-called photonic crystal cladding in 1996, and these fibers guide light by a new physical mechanism different from traditional fibers. Photonic crystal fibers can be simply divided into two groups, one is index guiding fiber and the other is photonic bandgap fiber. Both of them have 2D periodic structures with designed defect structure in the center. Hence light can be confined and guided by special defect modes.

We have successfully demonstrated microstructured fibers which have 2D periodic structure by LHPG method. During the fabrication processes, capillaries may collapse due to the surface tension. We discuss the hole-collapse issue and our solution. Besides, the quality of fiber extremely depends on the stability of laser power of the LHPG system, so we design an efficient feedback control to improve it. We also discuss the fibers’ SEM images and optical properties. Finally the future work refers to the drawing of 3D photonic crystal fiber and improving the sharp thermal gradient by using a sapphire tube.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vi

第一章 緒論 1
第二章 光子晶體光纖理論與應用 5
    2.1 原理 5
    2.2 分類與特性 13
    2.3 應用 21
第三章 光子晶體光纖的製造 24
    3.1 雷射加熱基座生長系統 24
    3.2 製程 29
    3.3 微孔崩陷問題與解決方法 32
第四章 實驗結果與討論 40
    4.1 微結構的電子顯微鏡影像分析 40
    4.2 光學特性量測 48
第五章 結論與未來工作 50

參考文獻 51
中英對照表 54
參考文獻 References
[1] J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, "Photonic band cap guidance in optical fibers," Science, 282, pp. 1476-1478, 1998.
[2] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., 58, pp. 2059-2062, 1987.
[3] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., 58, pp. 2486-2489, 1987.
[4] S. Shi, C. Chen, and D. W. Prather, "Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers," J. Opt. Soc. Am. A, 21, pp. 1769-1775, 2004.
[5] T. Krauss, R. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelength," Nature, 383, pp. 699-702, 1996.
[6] H. B. Lin, R. Tonucci, and A. Campillo, "Observation of two-dimensional photonic band behavior in the visible," Appl. Phys. Lett., 68, pp. 1341-1344, 1994.
[7] T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. E. Barkou, "Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure estimated using a new effective-index model," IEEE J. Quantum Electron., 34, pp. 2308-2313, 1998.
[8] A. Maradudin and A. McGurn, "Out of plane propagation of electromagnetic wave in a two-dimensional periodic dielectric medium," J. Mod. Opt., 41, pp. 275-284, 1994.
[9] X. Feng and Y. Arakawa, "Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal," IEEE Journal of Quantum Electron., 32, pp. 535-542, 1996.
[10] A. Bjarklev, A. S. Bjarklev, and J. Broeng, "Photonic crystal fibres," Kluwer Academic Publishers, 2003. ISBN: 1-4020-7610-3.
[11] P. Russell, "Photonic Crystal Fibres," Science, 299, pp. 358-362, 2003.

[12] T. P. Hansen, J. Broeng, S. E. B. Libori, and A. Bjarklev, "Highly birefringent index-guiding photonic crystal fibres," IEEE Photon. Technol. Lett., 13, pp. 588-590, 2001.
[13] R. Ghosh, A. Kumar, and J. P. Meunier, "Waveguiding properties of holey fibres and effective-V model," IEE Electron. Lett., 35, pp. 1873-1875, 1999.
[14] J. C. Knight, T. A. Birks, R. F. Cregan, P. Russell, and J. P. de Sandro, "Large mode area photonic crystal fibre," IEE Electron. Lett., 34, pp. 1347-1348, 1998.
[15] K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, and A. Bjarklev, "Highly nonlinear photonic crystal fiber with zero dispersion at 1.55 mm," OFC, postdeadline paper, 2002.
[16] A. N. Naumov and A. M. Zheltikov, "Optical harmonic generation in hollow-core photonic-crystal fibres: analysis of optical losses and phase-matching conditions," IEEE J. Quantum Electron., 32, pp. 129-134, 2002.
[17] T. A. Birks, J. C. Knight, and P. Russell, " Endlessly single-mode photonic crystal fiber," Opt. Lett., 22, pp. 961-963, 1997.
[18] T. A. Birks et al., " Photonic crystal fibers: An endless variety" IEICE Trans. Electron., E84-C, pp. 585-592, 2001.
[19] J. Ranka, R. Windeler, and A. Stentz, "Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," CLEO, CPD8, Baltimore, 1999.
[20] M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol., 2, pp. 116-126, 1984.
[21] T. Katagiri, Y. Matsuura, and M. Miyagi, "Metal-covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt., 41, pp. 7603-7606, 2002.
[22] J. C. Knight, "Photonic crystal fibres," Nature, 424, pp. 847-851, 2003.

[23] K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultra low loss and long length photonic crystal fiber," OFC 2003.
[24] F. Benabid et al., "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science, 298, pp. 399-402, 2002.
[25] A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett., 24, pp. 156-159, 1970.
[26] F. Benabid et al., "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Exp., 10, pp. 1195-1203, 2002.
[27] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett., 25, pp. 25-27, 2000.
[28] W. J. Wadsworth et al., "Continuous-wave tunable optical parametric generation in a photonic-crystal fiber," J. Opt. Soc. Am. B, 22, pp. 2505-2511, 2005.
[29] I. Hartl et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett., 26, pp. 608-610, 2001.
[30] J. Kirchhof, K. Gerth, J. Kobelke, and K. Schuster, "Viscous behaviour of silica tubes during collapsing and hollow fiber drawing," ESG, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code