Responsive image
博碩士論文 etd-0727107-162155 詳細資訊
Title page for etd-0727107-162155
論文名稱
Title
以薄膜體聲波共振器製作質量感測器之研究
The fabrication of mass sensor using thin-film bulk acoustic resonator (FBAR)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-25
繳交日期
Date of Submission
2007-07-27
關鍵字
Keywords
氧化鋅、質量感測器、薄膜體聲波共振器
ZnO, FBAR, mass sensor
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
本論文之研究目的為以氧化鋅薄膜體聲波共振器(FBAR)研製高敏感度的質量感測器。本研究的FBAR結構為背向蝕刻矽基板,先以濕式蝕刻法形成聲波空腔,並在正面以鈦為晶種層、白金為底電極並以室溫兩階段濺鍍成長高C軸優選取向的氧化鋅薄膜,再以鋁為頂電極,最終以RIE乾蝕刻法去除背部殘餘矽及蝕刻阻擋層(SiN )。在元件的頻率響應分析方面,分別獲得縱波模式及剪波模式之共振現象。
經由不同的鈦與鉬質量負載測試,求得本研究的縱波及剪波質量感測度分別約為3200 Hz cm /ng及1100 Hz cm /ng,遠高於石英震盪器及其他文獻所知。
本論文採用熱電致冷晶片作為升溫量測實驗之模組,經由不同的升溫測試,求得本研究的質量感測器之頻率溫度係數為-70.67 ppm/℃。另外,利用正溫度係數的二氧化矽薄膜沉積在ZnO薄膜上,以改善元件的頻率溫度係數。最終,由分析結果可得知,二氧化矽薄膜改善了元件的頻率溫度係數。
Abstract
In this study, ZnO film bulk acoustic resonators (FBARs) are proposed to fabricate the mass sensor of high sensitivity. The acoustic cavity is achieved by potassium hydroxide (KOH) etching. The FBAR structures are made of highly C-axis-oriented piezoelectric ZnO thin films using the technique of two-step deposition method. The titanium (Ti) seeding layer, platinum (Pt) bottom electrode, and aluminum (Al) top electrode were deposited by DC sputtering system using a dual gun. Finally, The remnants of silicon and silicon nitride (SiNx) are removed by reactive ion etching (RIE) etching. Furthermore, the two resonant frequencies of longitudinal mode and shear mode had been obtained.
From the experimental results of loading effect with titanium and molybdenum, the mass sensitivity of the longitudinal mode and the shear mode are about 3200 Hz cm /ng and 1100 Hz cm /ng respectively, which are larger than those of quartz resonator or other reports. The measurement system was composed of a thermoelectric cooling module to investigate the temperature coefficient of frequency (TCF) of the mass sensor, which is about -70.67 ppm/.
Bisides, the positive TCF material, silicon dioxode (SiO2) is deposited on ZnO thin films for the purpose of improving the TCF of FBAR devices. For SiO2/ZnO FBAR devices, the SiO2 reveal the compensation of TCF.
目次 Table of Contents
摘要 Ⅰ
目錄 Ⅲ
圖表目錄 Ⅴ
第一章 前言 1
1.1 簡介 1
1.2 薄膜體聲波 2
1.3 研究目的 3
第二章 理論分析 5
2.1 壓電效應 5
2.2 壓電材料 6
2.3 Mason 等效電路模型 7
2.4 體聲波傳遞模式 10
2.5 質量負載效應 10
2.6 感測度計算 11
2.7 二氧化矽結構與特性 11
2.8 頻率溫度係數測量 11

第三章 實驗步驟 13
3.1 薄膜體聲波質量感測元件製作流程 13
3.1.1常見的不同電極材料之物性比較及選擇 13
3.1.2元件製作流程 14
3.1.3測試金屬膜之沉積率 14
3.2 量測系統校正 15
3.3 感測元件之結構與測量 15
3.4 變溫量測系統 16
3.4.1 熱電致冷晶片 16
3.4.2 珀爾帖效應(Peltier Effect) 17
3.4.3 熱電致冷晶片特性 17
第四章 結果與討論 18
4.1氧化鋅壓電薄膜之物性分析 18
4.2感測元件之頻率溫度係數 19
4.3不同金屬的質量負載效應 20
4.3.1縱波感測度分析. 20
4.3.2剪波感測度分析 21
4.4利用二氧化矽補償頻率溫度係數 22
4.4.1 SiO2薄膜補償之TCF值. 22
第五章 結論 24
參考文獻 26
參考文獻 References
[1] 黃仕泓、柯正浩,“表面聲波感測器之前瞻研究”,物理雙月刊(廿三卷六期)2004 年 6 月.
[2] X. Xu, T. G. Thundat, G. M. Brown, and H.-F. Ji, “Detection of Hg ions using microcantilever sensors,” Anal. Chem., vol. 74, pp. 3611–3615,2002.
[3] M. Teresa, S. R. Gomes, K. S. Tavares and J. A. B. P. Oliveira,
“The Quantification of Potassium Using a Quartz Crystal
Microbalance, ” Analyst, vol. 125, pp. 1983-1986, 2000.
[4] 楊永瑞、饒達仁、蕭文修、戴竹君、凌永健,“利用11-MUA/Calix[6]arene bilayer 作為表面聲波生化仿生電子鼻感測系統之感測膜偵測胺類蒸氣”,中國機械工程學會第二十二屆全國學術研討會論文集,(2005)。
[5] C. Zhang, F. Feng, and S. Sui, “A new approach to the development of quartz crystal sensors distinguishing between mass loading and liquid damping,” IEEE Trans. Instrum. Meas., vol. 47, no. 5, pp. 1234–1238,1998.
[6] Zheng Zhang, Hanhong Chen, Jian Zhong, Ying Chen, Yicheng Lu
, “ZnO Nanotip-based QCM Biosensors, Proceedings of the 2006 IEEE Frequency Control Symposium, Miami, FL, Miami, FL, June 2006, pp. 545-549.
[7] 施任青,“以石英晶體微天秤法偵測金奈米標識之IgG時訊號之增強”,國立中山大學化學研究所碩士論文,(2003)。
[8] H. Zhang and E. S. Kim, “Micromachined Acoustic Resonant Mass Sensor, “ J. Microelectromech. Syst. vol. 14, pp. 699-706, 2005.
[9] Paul Bradley, Richard Ruby, John D. Larson III, Yury Oshmyansky, Domingo Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications,” IEEE MTT-S Digest, pp.367-370, 2001.
[10] Kok-Wan TAY, “Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators,” Japanese Journal of Applied Physics, vol. 43, No.8A, pp.5510-5515, 2004.
[11] R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin film bulk acoustic resonators for wireless applications,” IEEE Ultrason. Symp, pp.813-821, 2001.
[12] Dong-Hyun Kim, Munhyuk Yim, Dongkyu Chai, Giwan Yoon, “Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices,” Electronics Letters, vol.39, No.13, June, 2003.
[13] J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900MHz PCS Band,” IEEE Ultrasonics Symposium, pp.869-874, 2000.
[14] Motoaki Hara, Jan Kuypers, Masayoshi Esashi, “Surface micromachined AlN thin film 2GHz resonator for CMOS integration,” Sensors and Actuators, A117, pp.211-216, 2005.
[15] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner, “Advancement of MEMS into RF-Filter Applications,” IEEE IEDM, pp.897-900, 2000.
[16] R. B. Stokes and J. D. Crawfold: “X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol. 41, pp. 1075-1080, July 1993.
[17] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore: “Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[18] M.Schmid, E. Benes, W. Burger, and V. Kravchenko: “Motional
Capacitance of Layered Piezoelectric Thickness-mode Resonators”,
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 38, pp.199-206, May 1991.
[19] K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W. Andrus, “Bulk Acoustic Wave Resonators And Filters for Applications Above 2GHz”, MTT-S 2002 Paper TH1D-6 Expanded.
[20] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol. 43, pp. 5510-5515, 2004.
[21] P.B. Kirby, M.D.G. Potter, C.P. Williams and M.Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[22] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[23] R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[24] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” , J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[25] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.

[26] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[27] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp. 981-983..
[28] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc. IEEE, vol. 53, pp. 575-581, 1965.
[29] K. M. Lakin, “Development of Miniature Filters for Wireless Applications,” IEEE Trans. On Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[30] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminium Nitride Deposition by RF Sputtering”.
[31] Kok-Wan Tay, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics,” Japanese Journal of Applied Physics, Vol. 43, No.3, pp. 1120-1126, 2004.
[32] T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5GHz,” IEEE Ultrasonics Symposium, pp. 969-972, 2002.
[33] Jin Bock Lee, Jun Phil Jung, Myung Ho Lee, Jin Seok Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN based FBARs,” Thin Solid Films, pp. 610-614, 2004.
[34] Morito Akiyama, Keigo Nagao, Naohiro Ueno, Hiroshi Tateyama, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films,” Journal of Vacuum Science and Technology, vol.74, pp. 699-703, 2004.
[35] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, „High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5 GHz“, Proceedings of UFFC2002, Munich Oct. 8-11
[36] W. Pang, H. Yu, H. Zhang, and E. S. Kim, “Temperature compensated film bulk acoustic resonator above 2 Ghz,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 369–371, Jun. 2005.
[37] Masaki Takeuchi, Hajime Yamada, Hideki Kawamura, Yoshihiko Goto, Tadashi Nomura, Hiroyuki Fujino, Yukio Yoshino, Takahiro Makino, and Seiichi Arai , “Stress Adjustment and Characteristics Improvement in a 1.8GHz Range Film Bulk Acoustic Wave Resonator by Using Multi-layer Structure of ZnO/Al2O3/SiO2, ”
Nano- and Microelectromechanical Systems (NEMS and MEMS) and Molecular Machines as held at the 2002 MRS Fall Meeting; Boston, MA; USA; 2-4 Dec. 2002. pp. 117-122. 2003.
[38] Qing Xin Su, Paul Kirby, Eiju Komuro, Massaaki Imura, Qi Zhang, Roger Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films,” IEEE Transactions on microwave theory and techniques, vol.49, No.4, pp.769-778, April 2001.
[39] 鄒一德,“透明氧化鋅之薄膜電晶體技術開發研究”,國立交通大學 光電工程系 顯示科技研究所碩士論文,(2006)。
[40] 王瑞琪,“新穎氧化鋅奈米材料的成長與光電性質”,國立成功大學 材料科學及工程研究所博士論文,(2006)。
[41] 郭旭祥,“ZnO:Al薄膜氣體感測器之研究”,國立成功大學 材料科學及工程研究所碩士論文,(2000)。

[42] H. P. Loebl, C. Metzmacher, R. F. Milsom, P. Lok, F.van Straten, A. Tuinhout, “RF Bulk Acoustic Wave Resonator and Filters”, Journal of Electrocernmics, vol. 12, pp. 109-118, 2004.
[43] V. M. Ristic, ”Principles of Acoustic Devices”, 新智,(1984) 3
[44] M. Yim, D. H. Kim, D. Chai and G. Yoon “Effect of Thermal Annealing of W/SiO2 Multilayer Bragg Reflectors on Resonance Characteristics of Film Bulk Acoustic Resonator Devices with Cobalt Electrode”, J. Vac. Sci. Technol. A 22(3), pp. 465-471, May/Jun 2004.
[45] J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev and I. Petrov, “Dependence of the Electromechanical Coupling on the Degree of Orientation of c-Textured Thin A1N Films”, Trans. on IEEE Ultrason., Ferroelectr. Freq. Contr., vol. 51, No.10, 2004.
[46] Martin, M. –E. Jan, S. Rey-Mermet, D. Su and P. Muralt, “Shear Mode Coupling and Tilted Growth of AlN Thin Films in BAW Resonator,” IEEE Ultrason. Symp., pp. 333-336, 2005.
[47] M. Link, M. Schreiter, J. Weber, D. Pitzer, R. Primig, M. B. Assouar and O. Elmazria, “C-axis Inclined ZnO Films Deposited by Reactive sputtering using an additional blind for shear BAW devices”, IEEE Ultrason. Symp., pp. 202-205, 2005.
[48] Y. E. Lee, S. G. Kim, Y. J. Kim and H. J. Kim, “Effect of Oblique Sputtering on Microstructural Modification of ZnO Thin Films”, J. Vac. Sci. Technol. A 15(3), pp. 1194-1199, 1997.
[49] M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig and W. Wersing, “C-axis Inclined ZnO Films Shear-wave Transducers Deposited by Reactive Sputtering Using an Additional Blind”, J. Vac. Sci. Technol. A 24(2), pp. 218-222, 2006.
[50] 徐茂協,“以Mo/SiO2為布拉格反射層製作固態微型諧振器與濾波器之研究”,國立中山大學 電機工程學系碩士論文,(2005)。
[51] O'Toole, R.P., S.G. Burns, G.J. Bastiaans, M.D. Porter, "Thin Aluminum Nitride Film Resonators: Miniaturized High Sensitivity Mass Sensors," Analytical Chemistry, 64, 1992, pp. 1289-1294.
[52] 劉吉卿,“以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用”,國立中山大學 電機工程學系碩士論文,(2005)。
[53] 江衍樹,“熱電致冷低溫顯微鏡之研製與應用”, 國立臺灣大學生物產業機電工程學研究所碩士論文,(2002)。
[54] P. H. Carr, Ultrasonic Symp. Proc., IEEE Cat 74 CHO 896-1SU,(1974), 286.
[55] 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學 電機工程學系博士論文,(2004)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.251.155
論文開放下載的時間是 校外不公開

Your IP address is 3.149.251.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code