Responsive image
博碩士論文 etd-0727108-222104 詳細資訊
Title page for etd-0727108-222104
論文名稱
Title
應用於一維光纖陣列的主動式對準技術
Fabrication of one-dimensional optical fiber array using a new active-alignment technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-03
繳交日期
Date of Submission
2008-07-27
關鍵字
Keywords
光纖陣列、主動式對準技術、黏膠
fiber array, adhesive, alignment
統計
Statistics
本論文已被瀏覽 5668 次,被下載 2130
The thesis/dissertation has been browsed 5668 times, has been downloaded 2130 times.
中文摘要
本論文主要是描述一種應用於一維光纖陣列的新式主動式對準技術,其優點在於結構簡單、適用於矽模組光電元件上、可單獨微調每根光纖與雷射位置上的相對誤差。此主動式對準技術主要依據Chen C. W.[20]使用電極接高電壓產生的電場靜電力,調整點膠透鏡形狀所延伸出新的對準方式。利用高電壓產生的靜電力,用以拉動所欲固定光纖與光纖陣列套管中的黏膠表面,再藉由黏膠和光纖表面接觸的附著力來帶動光纖移動調整光纖的位置。文中將會探討此方法微調光纖位移的能力與黏膠黏度、表面點膠體積、電壓的關係,並做黏膠固化後偏移量的補償,使光纖陣列上的每根光纖達到最佳耦光位置。利用電場靜電力吸引表面黏膠帶動光纖位移的調整方式,可以快速調整陣列上每根光纖與雷射間之相對誤差且重現性高,可微調的最小精度為0.5μm;固化後可控制調整完的光纖位移誤差在±0.4μm內,此一陣列光纖模組的主動式對準技術,可單獨調整每根光纖與雷射的相對誤差,並且固定方式採用黏膠可適用於矽模組光電元件上,再利用微機電相關的製程技術製作陣列模組便可以大量生產,降低成本具工業上應用之價值。
Abstract
This paper presents a novel active-alignment technique to fabricate one-dimensional optical fiber array. The advantages of this technique are providing simple structure on silicon- based optoelctronic device and individually adjusting relative position error of fiber array and laser diode array. The way to adjust fiber displacement is applying electric force to pull the adhesive which used to fix fibers and microholders. Then the adhesive has adhesive force with fiber surface that bring fiber moving away from its original position. The method has to consider some issues including choosing the adhesive viscosity, controlling adhesive volume in the microholder, confirming adjusting precision of fiber displacement, compensating the fiber Offset after curing. So we can obtain the minimum adjusting precision 0.5μm and control the fiber traveling distance at ±0.4μm. The way to improve those issues of adjusting the fiber array to achieve the best coupling position is described in this paper.
目次 Table of Contents
目錄
謝誌................................................................................1
目錄................................................................................2
圖目錄............................................................................4
表目錄............................................................................7
摘要................................................................................8
英文摘要........................................................................9
第一章 序論 ................................................................10
1.1光纖陣列模組介紹................................................10
1.2對準技術介紹........................................................12
1.3主動與被動式對準的優缺點................................14
1.4研究動機................................................................15
1.5研究目的................................................................16
第二章 文獻回顧.........................................................17
2.1主動式對準技術....................................................17
2.1.1雷射銲接.............................................................17
2.1.2錫銲固定.............................................................19
2.1.3黏膠固定.............................................................20
2.2靜電力調整光纖位移的機制................................24
2.3用於矽模組上的黏膠比較....................................26
第三章研究方法..........................................................28
3.1分析光纖對準的架構與材料的選擇....................28
3.1.1光纖對準的架構與測試流程.............................28
3.1.2黏膠分析與點膠重現性控制.............................30
3.1.3測試微調光纖位移的能力.................................34
3.1.4角度容忍度探討.................................................37
3.2 設計陣列光纖對準的架構...................................38
第四章 實驗與結果.....................................................43
4.1實驗設備配置........................................................43
4.2實驗結果................................................................46
4.2.1量測電壓的變化與位移的關係.........................47
4.2.2固化後偏移量的量測與補償.............................55
第五章結論與未來發展..............................................62
5.1結論........................................................................62
5.2未來發展方向........................................................62
參考文獻......................................................................64
圖目錄
圖1.1 陣列光纖模組示意圖................................................12
圖1.2 被動式對準(單根光纖).............................................13
圖1.3 被動式對準(陣列光纖).............................................13
圖1.4 主動式對準(單根光纖).............................................14
圖1.5 主動式對準(陣列光纖).............................................14
圖2.1 Butterfly模組構裝圖.................................................18
圖2.2雷射銲點與雷射補銲.................................................18
圖2.3 陣列光纖結構與經過雷射銲鎚調整後的數據........19
圖2.4 DIP雷射模組示意圖與內部結構.............................20
圖2.5 雷射模組的剖面圖及耦合率量測結果....................20
圖2.6 調整架構及不同夾持距離電壓與位移關係圖........21
圖2.7 可主動調整的1×8光纖陣列.....................................22
圖2.8 光纖陣列與光波導對準架構....................................22
圖2.9 陣列模組的結構與耦合率量測圖............................22
圖2.10電吸引法製作微透鏡示意圖..................................24
圖2.11電吸引法微透鏡成形圖..........................................25
圖2.12 調整光纖位移示意圖.............................................25
圖3.1光纖套管外觀與相關尺寸.........................................29
圖3.2 光纖對準的架構........................................................30
圖3.3 (9)號UV膠加電壓前與加電壓後的測試結果.........31
圖3.4 電壓2000(volts)熱固膠固化前、後的關係圖.......32
圖3.5 電壓1500(volts)UV膠固化前、後關係圖..............32
圖3.6-1 定壓定時噴出的黏膠體積....................................34
圖3.6-2 殘留的黏膠體積....................................................34
圖3.7 控制表面點膠體積的示意圖....................................34
圖3.8 電壓與位移的關係圖................................................36
圖3.9 光纖彎曲示意圖........................................................38
圖3.10兩調整槽間電極正反面及尺寸示意圖..................40
圖3.11 設計的組件及組裝的流程.....................................41
圖4.1儀器設備配置(1)..................................................43
圖4.2儀器設備配置(2)..................................................44
圖4.3鏡頭取像比較圖.........................................................45
圖4.4 +X單方向電壓與X方向的位移關係圖.....................48
圖4.5 +Y單方向電壓與Y方向的位移關係圖.....................50
圖4.6 +X、+Y雙方向電壓與X方向的位移關係圖............51
圖4.7 +X、+Y雙方向電壓與Y方向的位移關係圖............53
圖4.8 比較測試架構與陣列上電壓與光纖位移關係圖....54
圖4.9 未加電壓時X、Y方向固化後偏移量.......................56
圖4.10 單軸加電壓X、Y方向固化後偏移量.....................57
圖4.11 雙軸加電壓X、Y方向固化後偏移量.....................58
圖4.12 光纖位移與電壓之關係圖.....................................59
圖4.13 固化後偏移量與電壓之關係圖.............................60
圖4.14 固化後位移與電壓之關係圖.................................60
圖5.1 光電轉換器內部結構................................................63
圖5.2 光能調節器內部結構................................................63
表目錄
表1.1 主動式對準與被動式對準的優缺點........................14
表2.1 三種常用於光電模組的固定技術比較....................23
表2.2 熱固膠與光固膠的特性比較....................................26
表3.1 黏膠黏度適用性比較................................................31
表3.2 測試電壓與位移的關係............................................35
表4.1 給予+X單方向電壓時X方向的位移量.....................47
表4.2 給予+Y單方向電壓時Y方向的位移量.....................49
表4.3 給予+X、+Y雙方向電壓時X方向的位移量............50
表4.4 給予+X、+Y雙方向電壓時Y方向的位移量............52
表4.5 未加電壓時X、Y方向固化後偏移量.......................55
表4.6 單軸加電壓X、Y方向的光纖位移、固化後位移及偏移量..56
表4.7 雙軸加電壓X、Y方向的光纖位移、固化後位移及偏移量..57
參考文獻 References
參考文獻
[1] Nakagawa G. ,Miura, K. ,Sasaki, S. , Yano, M. , “Lens-Coupled Laser Diode Module Integrated on Silicon Platform” Lightwave Technology, Journal of , Vol. 14 , Issue: 6 , Pages:1519 – 1523 , June 1996
[2] Hideyuki T. , Nobuyuki T. , Yoshimitsu A. ,” Passively Aligned LD/PD Array Submodules by Using Micro-Capillaries”IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, May2000
[3] Lai Q. , Hunziker W. , Melchior H. ,” Silica on Si waveguides for self-aligned fibre array coupling using flip-chip Si V-groove technique” Electronics Letters 26th Vol. 32 No. 20 , September 1996
[4] Madhumita D. , Zhaoyang H. , Mario D. , ”A Novel Method for Fabrication of a Hybrid Optoelectronic Packaging Platform Utilizing Passive–Active Alignment” IEEE Photonics Technology Letters, Vol. 15, No. 2, February 2003
[5] 陳建州,“非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板V型凹槽”, 國立中山大學機械工程研究所碩士論文, 2001
[6] Soon J. , “Automation manufacturing systems technology for opto-electronic device packaging” Electronic Components and Technology Conference, Pages:10-14 , 2000
[7] Hong Z. , Wenning L. , Yaomin L. , Samir K. Mondal, F. G. S. ,” A Novel Assembling Technique for Fiber Collimator Arrays Using UV Curable Adhesives” IEEE Transactions on Advanced Packaging, Vol. 25, no. 4, November 2002
[8] 宋欣錦,「蝶形雷射模組構裝銲後位移檢測」,國立中山大學機械與機電工程研究所碩士論文,2003。
[9] 黃韋凱,「2.5-10Gb/s高速蝶式半導體雷射模組銲後位移之研究」,國立中山大學光電工程研究所碩士論文,2003。
[10] Yaomin L. , Wenning L. ,Shi, F.G. , “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” Advanced Packaging, IEEE, Vol: 25 , Issue: 1, Pages:73-78, February 2002
[11] Kang S. G. ,Song M. K. ,Park S. S. ,Lee S.H. ,Hwang N. ,Lee H. T. ,Oh K. R. ,Joo G. C. ,Lee D. H. , “Fabrication of Semiconductor Optical Switch Module Using Laser Welding Technique” IEEE Transaction on Advanced Packaging, Vol. 23, no. 4, 2000.
[12] Johan H. C. V. Z. ,Simon G. L. P. ,Erwin C. A. D. ,Georgi D. P. ,G. D. Khoe, Antonius M. J. K. , Huug D. W. , “ Lensed Fiber-Array Assembly With Individual Fiber Fine Positioning in the Submicrometer Range” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 5, September/October 2006
[13] 張世恩,「利用銲錫技術構裝半導體雷射模組之研究」,國立中山大學光電工程研究所碩士論文,2002。
[14]Madhumita D. ,Mario D. , “ Solder-Assembled High Coupling Efficiency Single-Mode Laser Modules Using Micro-Heaters and Precompensation Technique” IEEE Transactions on Components and Packaging Technologies, Vol. 27, no. 2, June 2004
[15] Luetzelschwab M. , Weiland D. , Desmulliez M. P. Y. ,” Submicron Alignment of a Two-Dimensional Array of Multiple Single-Mode Fibers” IEEE Photonics Technology Letters, Vol. 17, No. 12, December 2005
[16] Weiland D., Luetzelschwab M. , Desmulliez M.P.Y. , Missoffe A. , Beck C. ,”Low-Cost Active-Alignment of Single-Mode Fiber-Arrays” 2005 International Symposium on Electronics Materials and Packaging (EMAP2005) ,Tobkyo Institute of Technology, Tokyo, Japan , December 11 14, 2005
[17] Zhiyi Z. , Jiaren L. , Ping Z. , Gao Z. X. , Chander P. G. ,”Active Alignment of Optical Fibers to Planar Waveguides Using a Thermal-Curing Adhesive” Journal of Lightwave Technology, Vol. 23, No. 2, February 2005
[18] Hong Z. , Wenning L. , Yaomin L. , Samir K. M. , Frank G. S. ,” A Novel Assembling Technique for Fiber Collimator Arrays Using UV-Curable Adhesives” IEEE Transactions on Advanced Packaging, Vol. 25, No. 4, November 2002
[19] Wenning L. , Yaomin L. , Frank G. S. ,” Adhesive joint design for high yield and low cost assembly of fiberoptic devices”, Electronic Components and Technology Conference , 2002
[20] Chen C. W. and Tseng F. G., ” Tunable Micro-Aspherical Lens Manipulated by 2D Electrostatic Forces,” ,Solid-State Sensors, Actuators and Microsystems,Digest of Technical Papers. Transducers '05. The 13th International Conference on, Vol. 1, pp.376~379,2005
[21] Zeng J. , Sobek D. , Korsmeyer T. , ”Electro-Hydrodynamic Modeling of Electrospray Ionization:CAD for μFluidic Device-Mass Spectrometer Interface”, Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on 2003, vol. 2, pp. 1275~1278, 2003.
[22] Norio M. ,” Adhesives for Optical Devices” NTT Advanced Technology
Corporation, 1998 Electronic Components and Technology Conference
[23] Jay G. L. , Bo M. A. , Ernest E. B. , Stephen K. F. ,”Epoxy Adhesives for Optical
Element Attachment in Planar Passive Optical Components”,Electronic Components
and Technology Conference, 2000
[24] Christian D. J. S. , Monika B. ,Norbert K. , Huihai Y. , Crispin Z. ,” New Triazine
Containing Polymers for use in Integrated Optics” IEEE Polytronic Conference , 2002
[25] 陳彥儒,「一維透鏡塑膠光纖陣列製造」,國立中山大學機械與機電工程
研究所碩士論文,2007。
[26] David A. H. , Wyatt O. D. , K. J. H. , Hart M. R. , Edward C. Y. , Chaparala M. ,
Behrang B. , Daneman M. J. , Kiang M.H. ,”Optical and Mechanical Performance of a Novel Magnetically Actuated MEMS-Based Optical Switch” Journal of Microelectromechanical Systems, Vol. 14, No. 2, April 2005
[27] Lim T.S. , Ji C. H. , Oh C. H. , Kwon H. , Yee Y. , Bu J. U. ,” Electrostatic MEMS Variable Optical Attenuator With Rotating Folded Micromirror” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, May/June 2004
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code