Responsive image
博碩士論文 etd-0727109-163812 詳細資訊
Title page for etd-0727109-163812
論文名稱
Title
研究兩性分子物質在聚二甲基矽氧烷表面的排列
Guiding ambiphilic molecular alignment using patterned polydimethylsiloxane surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-03
繳交日期
Date of Submission
2009-07-27
關鍵字
Keywords
聚二甲基矽氧烷、定向排列、原子力顯微鏡、自組裝薄膜、摩擦力
Alignment, Friction, Polydimethylsiloxane, Self-assembled monolayer, Atomic force microscopy
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
中文摘要
對液晶顯示器來說控制液晶分子的排列對顯示器的良率是很重要的。現在工業界最常使用的方法為摩擦,以絲絨布摩擦聚合物塗佈的玻璃基板顯示器,創造微溝槽。Berreman理論指出,液晶方子會沿著微溝槽的方向排列。另外,一些文獻也指出摩擦會造成表面層的高分子鏈定向排列,致使液晶分子也會沿著高分子鏈而排列。即使是現在也還不清楚摩擦表面的過程中是如何造成液晶分子有秩序地進行排列。
本論文描述了系統的研究物理與化學對液晶分子定向排列的的影響。我們使用傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy,FT-IR)確定表面化學官能基的變化,接觸角量測(Contact Angle meter,CA)以確定表面能和原子力顯微鏡(Atomic Force Microscope,AFM)去觀察液晶分子在表面上的排列。在這項研究中,我們深入的了解在固-液界面上,物理和化學效應影響表面的分子排列。我們的研究結果不僅可應用於液晶顯示器的技術,更普遍於生物芯片和生物傳感器裝置。
Abstract
Controlling the orientation of liquid crystal molecules in LC displays is extremely important for optimizing device performance. The method most commonly used in industry today involves rubbing the surface of the polymer-coated glass substrates used in the displays with a velvet cloth to create microscopic grooves. Berreman theory states that the liquid crystal molecules then align along the direction of the grooves. Alternatively, some literature shows that the friction caused by rubbing aligns the polymer chains in the surface layer which then attract and align the liquid crystal molecules along the direction of the chains. Even now, it is still unclear exactly how the process of rubbing the surface causes the liquid crystal molecules to align in an orderly manner.
This thesis describes a systematic study of the physical and chemical influence of the substrate on the alignment and orientation of liquid crystal molecules. We used Fourier Transform Infrared spectroscopy (FTIR) to identify surface chemistry, contact angle measurements to determine the surface energy, and atomic force microscopy (AFM) to observe the alignment of liquid crystal on the surfaces. In the course of this study, we have gained insight into how the physical and chemical properties of the surface affect the molecular arrangement in the solid-liquid interface. Our results can be applied not only to LCD technology, but more generally to biochips and biosensor devices.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v

第壹章 緒論 1
1-1前言 1
1-2研究背景 2
1-3研究目的 4
第貳章 儀器與實驗 5
2-1接觸角儀(Contact Angle) 5
2-1.1接觸角儀理論 5
2-2傅立葉轉換紅外線光譜儀(FT-IR) 8
2-3原子力顯微鏡(Atomic Force microscopy) 10
2-3.1原子力顯微鏡的簡介 10
2-3.2原子力顯微鏡的工作模式 11
2-4相位式原子力顯微鏡(Phase Imaging Microscope) 14
2-5側向力顯微鏡(Lateral Force Microscope) 15
2-6實驗材料 16
2-6.1高分子聚合物 16
2-6.2液晶分子 17
2-7溶液法 19
2-7.1 Zone casting 19
2-7.2 Dip coating 19
2-7.3 Flow - Induced Alignment 20
第參章 電漿誘導PDMS表面的圖案化 21
3-1前言 21
3-2實驗方法 23
3-2.1樣品製備 23
3-2.2特性分析 25
3-3結果與討論 25
3-4結論 34
第肆章 結果與討論 36
4-1物理效應對Discotic liquid crystal(DLC)排列的影響 36
4-1.1 AFM對基板的檢測 36
4-1.2 PDMS基板接觸角的量測 37
4-1.3物理效應對DLC的影響 41
4-2化學效應對DLC的影響 48
4-2.1基板特性的檢測 48
4-2.2 Fill in液晶分子 49
4-3物理加化學效應對DLC的影響 52
4-3.1 Attachment液晶酸分子 52
4-3.2 Attachment液晶酯分子 56
第伍章 結論 62
第陸章 未來展望 63
參考文獻 64
參考文獻 References
參考文獻
1. Bearzotti, A.; Bertolo, J. M.; Innocenzi, P.; Falcaro, P.; Traversa, E., J. Eur. Ceram. Soc. 2004, 24, 1969.

2. Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913.

3. Schmidt-Mende, L.; Fechtenko‥tter, A.; Mu‥llen, K.; Moons, E.; Friend, R. H.;
MacKenzie, J. D., Science 2001, 293, 1119.

4. Dimitrakopoulos, C. D.; Malenfant, P. R. L., Adv. Mater. 2001, 14, 99.

5. Mrksich, M.; Chen, C. S.; Xia, Y.; Dike, L. E.; Ingber, D. E.; Whitesides, G. M., Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10775.

6. Smith, R. K.; Lewis, P. A.; Weiss, P. S., Prog. Surf. Sci. 2004, 75, 1.

7. Kumar, S., Current Science 2002, 82, 256.

8. Hager; Hanker, J. Am. Pharm. Assoc. 1995, 44, 138.

9. Martin, R. B., Chemical Reviews 1996, 96, 3043.

10. 李政道, 液晶顯示器材料配向膜之開發與製程應用. 工業材料 87年8月, 140期, 109.

11. Haaren, J. V., Nature 2001, 411, 29.

12. Berreman, D. W., Phys. Rev. Lett. 1972, 28, 1683.

13. Pierre-Olivier Mouthuy; Melinte, S.; Geerts, Y. H.; Jonas, A. M., Nano Lett. 2007, 7, 9.

14. Jong Bok Kim; Chu Ji Choi; Jin Seol Park; Sung Jin Jo; Byoung Har Hwang; Min Kyoung Jo; Daeseung Kang; Se Jong Lee; Youn Sang Kim; Baik, H. K., Adv. Mater. 2008, 20, 3073.

15. Young, T., Philos. Trans. Roy. Soc. London 1805, 95, 65.
16. Wenzel, R. N., Ind. Eng. Chem. 1936, 28, 988.

17. Cassie, A.; Baxter, S., Trans. Faraday Soc. 1944, 40, 546.

18. Atkins, P.; Paula, J. D., Physical Chemical Seventh edition.

19. Park, J.; Lee, S.; Lee, H. H., Organic Electronics 2006, 7, 256.

20. Decher, G., 有機介質自組裝超薄膜之研究. Science 1997, 277, 1232.

21. Xu, L.; Vemula, S. C.; Jain, M.; Nam , S. K.; Donnelly, V. M.; Economou, D. J.; Ruchhoeft, P., Nano Lett. 2005, 5, 2563.

22. Weiss, C. O.; Larionova, Y., Rep. Prog. Phys. 2007, 70, 255.

23. Pan, Z. X.; Alem, N.; Sun, T.; Dravid, V. P., Nano Lett. 2006, 6, 2344.

24. Deng, T.; Prentiss, M.; Whitesides, G. M. Appl. Phys. Lett. 2002, 80, 461.

25. Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498.

26. Flounders, A. W.; Brandon, D. L.; Bates, A. H., Biosens. Bioelectron 1997, 12, 447.

27. Ohl, A.; Schroder, K., Surf. Coat. Technol. 1999, 116-119, 820.

28. Martinez, R. V.; Losilla, N. S.; Martinez, J.; Huttel, Y.; Garcia, R., Nano Lett. 2007, 7, 1846.

29. Chen, C. F.; Tzeng, S. D.; Lin, M. H.; Gwo, S., Langmuir 2006, 18, 7819.

30. Gu, J.; Yam, C. M.; Li, S.; Cai, C., J. Am. Chem. Soc. 2004, 126, 8098.

31. Chung, S. W.; Ginger, D. S.; Morales, M. W.; Zhang, Z. F.; Chandrasekhar, V.; Ratner, M. A.; Mirkin, C. A., small 2005, 64, 1.

32. McDonald, J. C.; Whitesides, G. M., Acc. Chem. Res. 2002, 35, 491.

33. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Biomaterials 1999, 20, 2363.

34. Graubner, V.-M.; Nuyken, O.; Lippert, T.; Wokaun, A.; Lazare, S.; Servant, L., Appl. Surf. Sci. 2006, 252, 4781.

35. Holgerson, P.; Sutherland, D. S.; Kasemo, B.; Chakarov, D., Appl. Phys. A 2005, 81, 51.

36. Watson, J. A.; Brown, C. L.; Myhra, S.; Watson, G. S., Nanotechnology 2006, 17, 2581.

37. Blach, J. A.; Watson , G. S.; Brown, C. L.; Pham, D. K.; Wright, J.; Nicolau, D. V.; Myhra, S., Thin Solid Films 2004, 459, 95.

38. Efimenko, K.; Wallace, W. E.; Genzer, J., J. Colloid. Interface 2002, 254, 306.

39. Egitto, F. D.; Matienzo, L. J., J. Mater. Sci. 2006, 41, 6362.

40. Lehocky, M.; Amaral, P. F. F.; Coelho, M. A. Z.; Stahel, P.; Barros-Timmons, A. M.; Coutinho, J. A. P., Czech. J. Phys. 2006, 56, B1256.

41. Lehocky, M.; Amaral, P. F. F.; Stahel, P.; Coelho, M. A. Z.; Barros-Timmons, A. M.; Coutinho, J. A. P., J. Chem. Technol. Biotechnol. 2007, 82, 360.

42. Lehocky, M.; Amaral, P. F. F.; Stahel, P.; Coelho, M. A. Z.; Barros-Timmons, A. M.; Coutinho, J. A. P., Surf. Eng. 2008, 24, 23
.
43. Adamczyk, Z.; Szyk-Warszynska, L.; Zembala, M.; Lehocky, M., Colloid Surf. A: Physicochem. Eng. Asp. 2004, 235, 65.

44. Lehocky, M.; Drnovska, H.; Lapcikova, B.; Barros-Timmons, A. M.; Zembala, M.; Lapcik, L., Colloid Surf. A: Physicochem. Eng. Asp. 2003, 222, 125.

45. Barton, D.; Bradley, J. W.; Gibson, K. J.; Steele, D. A.; Short, R. D., J. Phys. Chem. B 2000, 104, 7150.

46. Graubner, V.-M.; Jordan, R.; Nuyken, O.; Lippert, T.; Hauer, M.; Schnyder, B.; Wokaun, A., A. Appl. Surf. Sci. 2002, 197-198, 786.

47. Miller, A. A., J. Am. Chem. Soc. 1960, 82, 3519.

48. Hegemann, D.; Brunner, H.; Oehr, C., Nucl. Instrum. Meth. B 2003, 208, 281.

49. Egitto, F. D.; Matienzo, L. J., IBM J. Res. Dev. 1994, 38, 423.

50. Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; K, Y. H.; Wikstrom, K., Polymer 2000, 41, 6851.

51. Owen, M. J.; Smith, P. J., J. Adhes. Sci. Technol. 1994, 8, 1063.

52. Meenakshi, V.; Babayan, Y.; Odom, T. W., J. Chem. Educ. 2007, 84, 1795.

53. Hoeppener, S.; Maoz, R.; Sagiv, J., Adv. Mater. 2006, 18, 1286.

54. Hoeppener, S.; Maoz, R.; Sagiv, J., Nano Lett. 2003, 3, 761.

55. Checco, A., Langmuir 2006, 22, 116.

56. Hsieh, S., J. Nanosci. Nanotechnol. 2008, 8, 1.

57. Noy, A.; Frisbie, C. D.; Rozsnyai, L. F.; Wrighton, M. S.; Lieber, C. M., J. Am. Chem. Soc. 1995, 117, 7943.

58. Watson, J. A., Micro/nano-physical and chemical architecture of polymer
surfaces by ultra-violet exposures and scanning probe microscopy, PhD Dissertation 2004.

59. Xiao, D.; Zhang, H.; Wirth, M., Langmuir 2002, 18, 9971.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.82.79
論文開放下載的時間是 校外不公開

Your IP address is 13.58.82.79
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code