Responsive image
博碩士論文 etd-0727109-164229 詳細資訊
Title page for etd-0727109-164229
論文名稱
Title
利用原子力顯微鏡對表面進行力學測量及研究分子表面結構
Utilizing AFM for Surface Force Measurement and Structure Characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-10
繳交日期
Date of Submission
2009-07-27
關鍵字
Keywords
短桿菌素、黏著力、摩擦力、自組裝單分子薄膜、原子力顯微鏡
Gramicidin, Adhesion, Atomic force microscopy, Self-assembled monolayer, Friction
統計
Statistics
本論文已被瀏覽 5630 次,被下載 0
The thesis/dissertation has been browsed 5630 times, has been downloaded 0 times.
中文摘要
原子力顯微鏡 (Atomic Force Microscope) 為提供我們瞭解奈米層級的重要測量儀器,AFM不僅可觀察出表面地貌情況,還可利用AFM探針與樣品表面的作用力(包括:黏滯力、摩擦力)進一步瞭解表面的化學性質。
實驗中先以N-octadecyltrichlorosilane (OTS) 分子作為自組裝分子,在矽晶圓表面上形成自組裝薄膜,OTS只需很短時間(約十五秒鐘)即可完成薄膜,但容易受到強氧化劑 (KMnO4) 的化學侵蝕而使表面變質,使表面原為疏水性官能基 (CH3) 變成親水性官能基 (OH),反之長時間所形成之薄膜 (約二十四小時) 則不易被蝕刻變性,因此可得知表面上自組裝薄膜中的碳鏈密集度與表面抗侵蝕的能力有極大的關係。
另外生物分子短桿菌素 (Gramicidin) 含有外圍疏水,中間離子通道部分親水的特殊構造,將此分子使用不同的基板 (Silicon、Mica、Graphite)以及Langmuir-Blodgett Film製膜技術,使它有規則性排列至表面上,藉由AFM測量技術可得知,Gramicidin在Silicon表面上聚集排列、在Mica表面上會成垂直緊密排列、而在Graphite表面上出現特殊圓形結構。
Abstract
Atomic force microscopy (AFM) is an important technology that allows researchers to probe local surface properties at nanometer length scales. In addition to surface topography, the AFM can probe many types of tip-surface interactions (including adhesion and friction) to gain a better understanding of the chemical properties of surfaces. This thesis contains two experiments which utilize AFM to in addition to several other techniques to study (1) Self Assembled Monolayer (SAM) formation and corrosion and (2) intermolecular and surface/molecular effects on gramicidin film formation and molecular orientation.
In the first experiment, N-octadecyltrichlorosilane (OTS) molecules were self-assembled onto silicon samples. We observed that OTS required a very short time (about 15 seconds) to complete the formation of the monolayer on surface. However, this SAM film was highly susceptible to corrosion by the strong oxidant (KMnO4), resulting in a chemical change to the film from hydrophobic functional groups (CH3) to hydrophilic functional groups (OH). In subsequent experiments, we observed that if the SAMs were formed using longer exposure times (about 24 hours), they were highly resistant to corrosion. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS) also showed that the 24 hour growth SAM films were densely packed. These results indicate that SAM films based on organosilane molecules can protect the surface from corrosion, and further that more densely packed SAMs exhibit better anti-corrosion performance than less dense films.
In the second experiment, the antibacterial peptide Gramicidin was used to study how intermolecular and surface energy properties can influence the aggregation and film formation of molecules on several surfaces. Gramicidin has a unique physical and chemical structure with hydrophobic side chain and hydrophilic ends. Here, we have used three different substrates (Silicon, Mica, and Graphite) to study intermolecular interactions, aggregation, and orientation of Gramicidin peptide. Langmuir-Blodgett methods were also used to study aggregation and molecular orientation at the solid-liquid interface.
目次 Table of Contents
中文摘要…………………………………………..............…………………… i
英文摘要………………………………………………….............…………… ii
目錄…………………………………………………………………………… iv
圖目錄………………………………………………………………….…….. vii

第壹章 緒論……………………………………………………………..…1
第貳章 儀器與實驗……………………………………………………..…4
2-1 實驗儀器………………………………………………………….…4
2-1.1 原子力顯微鏡………………….…….………………………4
2-1.2 側向力顯微鏡………………………………………………..8
2-1.3 Adhesion force(探針與表面的吸附力)……....……….....9
2-1.4 接觸角測量儀………………………………………………10
2-1.5 傅立葉紅外線光譜…………………………………………12
2-1.6 X-ray photoelectron spectroscopy………………………..…13
2-1.7 Langmuir-Blodgett (LB) 製膜機………...............................14
2-2 實驗材料………………………………………………...…………17
2-3 樣品製備……………………………………………………...……18
2-3.1 自組裝分子製備…………………………………….……….18
2-3.2 使用過錳酸鉀溶液侵蝕表面步驟………...………………...18
2-3.3 將生物分子短桿菌素 (Gramicidin) 分散至Silicon、Mica、Graphite三種表面上之步驟………………………………....19
2-3.4 使用Langmuir-Blodgett 製膜技術將Gramicidin在表面上排列之步驟………………………………………………...……19
第參章 結果討論…………………………………………………………20
3-1 使用儀器觀察分子層生長………………………………….20
3-1.1 原子力顯微鏡…………………………………………….....20
3-1.2 傅立葉紅外線光譜………………………………….………23
3-1.3 X-ray photoelectron spectroscopy…………………………...26
3-2 觀察侵蝕後的表面……………………..………………………...29
3-2.1 接觸角測量儀……………………………….………………29
3-2.2 原子力顯微鏡………………………………….……………31
3-2.3 側向力顯微鏡……………………………………………….34
3-2.4 X-ray photoelectron spectroscopy……………………….…..36
3-3 Gramicidin 分子在各種表面上排列………………………….…38
3-4 使用Langmuir-Blodgett方式將分子在表面上排列……….........48
3-4.1 Langmuir-Blodgett曲線分析…………………………….…48
3-4.2 將矽晶圓片Dip coating上不同緊密度的分子層……….…50
3-4.3 Gramicidin在疏水性官能基(CH3)表面上排列……...……55

3-4.4 Gramicidin在不同官能基上排列後的Adhesion force結果...………………………………………………………….56
第肆章 結論………………………………………………………...…….60
第伍章 未來展望…………………………………………………………61
References………………………………………………………………….62
參考文獻 References
1. Sullivan, J. T.; Harrison, K. E.; Mizzell, J. P.; Kilbey, S. M., Langmuir 2000, 16, 9797-9803.

2. Ostuni, E.; Grzybowski, B. A.; Mrksich, M.; Roberts, C. S.; Whitesides, G. M., Langmuir 2003, 19, 1861-1872.

3. Cao, T.; Wei, L.; Yang, S.; Zhang, M.; Huang, C.; Cao, W., Langmuir 2002, 18, 750-753.

4. Nakamura, M.; Yanagisawa, H.; Kuratani, S.; Iizuka, M.; Kudo, K., Thin Solid Films 2003, 439, 360–364.

5. Maoz, R.; Cohen, S. R.; Sagiv, J., Adv. Mater. 1999, 11, (1), 55-61.

6. Hoeppener, S.; Maoz, R.; Sagiv, J., Nano Lett. 2003, 3, (6), 761-767.

7. Itoh, M.; Nishihara, H.; Aramaki, K., J. Electrochem. Soc. 1995, 142, (6), 1839-1846.

8. Schreiber, F., Progress in Surface Science 2000, 65, 151-256.

9. Bain, C. D.; Whitesides, G. M., Science 1988, 240, 62-63.

10. Leitner, T.; Friedbacher, G.; Vallant, T.; Brunner, H.; Mayer, U.; Hoffmann, H., Mikrochim.Acta 2000, 133, 331-336.

11. Wang, Y.; Lieberman, M., Langmuir 2003, 19, 1159-1167.

12. Buontempo, J. T.; Rice, S. A., J. Chem. Phys. 1993, 98, (7).

13. Epps, H. L. V., The Journal of Experimental Medicine 2006, 203, (2), 259.

14. Kelkar, D. A.; Chattopadhyay, A., Biochimica et Biophysica Acta 2007, 1768, 2011–2025.

15. Roux, B.; Karplus, M., J. Am. Chem. Soc. 1993, 115, 3250-3262.
16. Mou, J.; Czajkowsky, D. M.; Shao, Z., Biochemistry 1996, 35, 3222-3226.

17. Quist, A. P.; Chand, A.; Ramachandran, S.; Daraio, C.; Jin, S.; Lal, R., Langmuir 2007, 23, 1375-1380.

18. Binnig, G.; Quate, C. F.; Gerber, C., Physical Review Letters 1986, 56, (9), 930-933.

19. A practical guide to AFM force spectroscopy and data analysis, Germany, Owen, R., JPK Instruments AG.

20. Langmuir, I., J. Am. Chem. Soc. 1917, 39, 1848-1906.

21. Blodgett, K. B., J. Am. Chem. Soc. 1935, 57, 1007-1022.

22. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry fourth edition;Harper Collins College Publishers: New York, 1993.

23. Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M., Langmuir 1989, 5, (4), 1074-1087.

24. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D., J. Am. Chem. Soc. 1987, 109, (12), 3559-3568.

25. Mirji, S. A., Surf. Interface Anal. 2006, 38, 158–165.

26. Noy, A.; Frisbie, C. D.; Rozsnyai, L. F.; Wrighton, M. S.; Lieber, C. M., J. Am. Chem. Soc. 1995, 117, 7943-7951.

27. Simonsen, M. E.; Sønderby, C.; Li, Z.; Søgaard, E. G., J. Mater. Sci. 2009,
44, 2079-2088.

28. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. 1979, Handbook of X-ray Photoelectron Spectroscopy. PerkinElmer Inc. U.S.A.

29. Yin, H.; Tran, P.; Greenberg, G. E.; Fischer, V., Drug Metabolism and Disposition 2001, 29, (2), 185-193

30. Quigley, E. P.; Emerick, A. J.; Crumrine, D. S.; Cukierman, S., Biophysical Journal 1998, 75, 2811–2820.

31. Ducharme, D.; Vaknin, D.; Paudler, M.; Salesse, C.; Riegler, H.; Mohwald, H., Thin Solid Films 1996, 284-285, 90-93.

32.Osváth, Z.; Darabont, A.; Nemes-Incze, P.; Horváth, E.; Horváth, Z. E.; Biró,
L. P., Carbon 2007, 45, 3022–3026.

33. Diociaiuti, M.; Bordi, F.; Motta, A.; Carosi, A.; Molinari, A.; Arancia, G.; Coluzza, C., Biophysical Journal 2002, 82, 3198-3206.

34. Chitta, R. K.; Gross, M. L., Biophysical Journal 2004, 86, 473–479.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.107.241
論文開放下載的時間是 校外不公開

Your IP address is 3.139.107.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code