Responsive image
博碩士論文 etd-0727109-182934 詳細資訊
Title page for etd-0727109-182934
論文名稱
Title
利用薄膜生物處理程序去除有機碳
Removal of organic carbon by using a membrane bioreactor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-10
繳交日期
Date of Submission
2009-07-27
關鍵字
Keywords
生物可利用有機碳、活性碳、薄膜生物反應器、溶解性有機碳
Assimilable organic carbon, Dissolved organic carbon, Activated carbon, Membrane bioreactor
統計
Statistics
本論文已被瀏覽 5627 次,被下載 0
The thesis/dissertation has been browsed 5627 times, has been downloaded 0 times.
中文摘要
中南部經常見到淨水場處理後之清水含有過量的生物可利用有
機碳(Assimilable organic carbon, AOC),它會在配水管線內引起異營
性微生物繁殖,而使水質惡化。近年來,淨水場之淨水程序部分由傳
統提升為高級處理程序,過去研究指出台灣南部淨水場的高級淨水流
程超過濾(Ultrafiltration, UF) / 逆滲透(Reverse osmosis, RO),對於
AOC之去除成效不彰。主要原因為水中有機物所導致之薄膜生物阻
塞,而使薄膜反沖洗次數增加、減少薄膜壽命、成本增加等問題。
本研究以活性碳(Activated carbon) 結合薄膜生物處理程序
(Membrane bioreactor, MBR)探討在飲用水處理流程之效率。結果顯示
利用此處理程序能有效的降低水中的有機碳的量,實驗原水採自淨水
場經臭氧程序的出水,溶解性有機碳(Dissolved Organic Carbon, DOC)
值平均去除率約57%,AOC值去除率約36%;而延長水力停留時間,
DOC值去除率約81%,AOC去除率66%。
本研究程序對於AOC及DOC顯示出有中等的處理成效,是個可
參考的生物穩定性及有機質去除之處理程序,具較低成本建造及維修
費及高效能的要求。
Abstract
The drinking water treated by water treatment plant (WTP) usually has an
excess of assimilable organic carbon (AOC) in distribution systems in south Taiwan.
They will cause the growth of heterotrophic plate count (HPC) and deterioration of
water quality in pipeline of distribution systems. Recently, part of traditional
purification processes were changed into advanced processes in WTP. The past
researches showed the combined advanced processes ultrafitration (UF) / reverse
osmosis (RO) in south WTP in Taiwan has the removal problems of AOC in above
UF / RO processes because the organic compounds in raw water caused a fouling
layer which was formed on the membranes surface. These problems made the
back-wash frequency increasing, short membrane life and raising cost.
The study combines activated carbon and membrane bioreactor (MBR) to
explore the removal efficiency of drinking water in laboratory. The system showed
the removal efficiencies of dissolved organic carbon (DOC) and AOC were 57%
and 36%, respectively in average. More, the system showed the removal
efficiencies of DOC and AOC were 81% and 66%.
The results of this research showed good removal efficiency was found in
AOC and DOC. Good quality of biological stability, removal of organic compounds,
low cost in building and maintaining were reached.
目次 Table of Contents
目 錄
頁數
摘要......................................................................................................I
目錄......................................................................................................V
圖目錄..................................................................................................X
表目錄..................................................................................................XII
第一章 緒論........................................................................................1
1-1 研究緣起..................................................................................1
1-2 研究目的及內容......................................................................3
第二章 文獻回顧...............................................................................4
2-1 高級淨水處理程序...................................................................4
2-2 自然界水體中其有機物之分類及性質...................................8
2-3 生物穩定性問題.......................................................................9
2-3-1 微生物後生長之影響因子及控制方法............................11
2-3-2 生物可分解有機質之測定................................................13
2-3-3 AOC....................................................................................16
2-4 薄膜...........................................................................................22
2-4-1 薄膜的分類與材質特性....................................................23
2-4-2 薄膜的結構特性與選擇....................................................25
2-4-3 薄膜過濾機制....................................................................26
2-4-4 薄膜處理所面臨之問題....................................................28
2-4-5 薄膜於淨水場的應用.......................................................29
2-5 薄膜生物反應器起源...............................................................32
2-5-1 MBR 之種類......................................................................33
2-5-2 MBR 之優點......................................................................34
2-6 薄膜生物反應器與粉末型活性碳...........................................39
第三章 實驗方法...............................................................................42
3-1 研究流程之規劃.......................................................................42
3-2 AOC 分析..................................................................................43
3-2-1 純菌菌液的預先培養(Precultures)...................................44
3-2-1-1 前培養基、LLA 培養基及LLB 之配置..................44
3-2-1-2 菌種活化與培養........................................................47
3-2-2 菌種純種鑑定與特性分析................................................47
3-2-2-1 Oxidase reaction 之檢驗............................................48
3-2-2-2 氧化與發酵檢驗........................................................48
3-2-2-3 ADH 反應...................................................................49
3-2-2-4 Fluorescence on R2A-mediium ..................................50
3-2-3 AOC 器皿之清洗方式......................................................51
3-2-4 AOC 使用菌種其生長曲線與產率之求得......................52
3-2-3 水樣AOC 之檢測方式.....................................................55
3-3 非揮發性溶解性有機碳
(Non-Purgable Dissolved Organic Carbon, NPDOC)...............58
3-3-1 使用藥劑種類與配置方法................................................58
3-3-2 分析原理與方法................................................................59
3-4 實驗設計...................................................................................59
3-4-1 微生物馴養........................................................................60
3-4-2 分析藥品............................................................................61
3-4-3 分析儀器與設備................................................................61
3-5 水質項目與分析方法...............................................................62
第四章 結果與討論...........................................................................64
4-1 高級淨水處理程序之探討.......................................................64
4-1-1 基本水質參數....................................................................64
4-1-2 有機物................................................................................65
4-1-2-1 溶解性有機碳............................................................65
4-1-2-2 生物可利用有機碳....................................................66
4-2 Pseudomonas fluorescens strain P17 及Spirillum species
strain NOX 菌種特性鑑定及產率(Yield)計算......................69
4-2-1 P17 及NOX 菌種鑑定特性..............................................69
4-2-2 P17 及NOX 之生長曲線及產率(Yield)值.......................70
4-3 批次式生物反應槽....................................................................77
4-3-1 研究動機............................................................................77
4-3-2 基本參數............................................................................77
4-3-3 實驗結果............................................................................78
4-4 連續式生物反應程序...............................................................80
4-4-1 生物反應程序之基本參數................................................80
4-4-2 生物反應程序之操作........................................................82
4-4-3 實驗結果............................................................................84
4-5 PAC 與薄膜生物反應處理成效的關係...................................87
4-6 AOC 值在淨水流程及水質分析上之意義..............................88
第五章 結論與建議...........................................................................91
5-1 結論...........................................................................................91
5-2 建議...........................................................................................92
參考文獻..............................................................................................94
圖目錄
頁數
圖2-1 DOC、BDOC、NBDOC (DOC-BDOC)及AOC 之關係14
圖2-2 各物種粒徑大小與各式薄膜孔徑之分佈圖...................25
圖2-3 過濾機制示意圖...............................................................27
圖2-4 薄膜過濾機制圖...............................................................29
圖2-5 側流式與沉浸式薄膜生物反應槽...................................34
圖2-6 薄膜單元取代之二級生物程序設施項目圖...................39
圖3-1 實驗流程圖.......................................................................42
圖3-2 AOC 分析之流程圖..........................................................43
圖3-3 AOC 檢量線分析流程圖..................................................54
圖3-4 AOC 水樣處理之流程圖..................................................57
圖3-5 裝置設備圖.......................................................................60
圖4-1 高級淨水處理流程...........................................................66
圖4-2 高級淨水流程DOC 變化圖.............................................66
圖4-3 高級淨水流程AOC 變化圖.............................................68
圖4-4 AOC 於高級淨水流程中組成比例圖.............................68
圖4-5 Pseudomonas fluorescens strain P17 於各種acetate-C 濃度下
之生長曲線.......................................................................71
圖4-6 Spirillum species strain NOX 於各種acetate-C 濃度下之生長
曲線...................................................................................72
圖4-7 P17 菌株............................................................................73
圖4-8 NOX 菌株.........................................................................73
圖4-9 Pseudomonas fluorescens strain P17 之最大菌落數與
acetate-C 之產率關係.....................................................75
圖4-10 Spirillum species strain NOX 之最大菌落數與
acetate-C 之產率關係.....................................................76
圖4-11 某淨水流程圖...................................................................77
圖4-12 微生物馴養PAC 濃度與DOC 相關圖...........................79
圖4-13 微生物馴養PAC 濃度與AOC 相關圖...........................79
圖4-14 連續式反應槽之溫度變化...............................................81
圖4-15 連續式生物活性碳薄膜反應HRT 與DOC 圖...............86
圖4-16 連續式生物活性碳薄膜反應HRT 與AOC 關係圖.......86
圖4-17 HRT 與AOC-NOX、AOC-P17 比例圖........................87
表2-1 P. fluorescens strain P17 及Spirillum sp. strain NOX 之特性
...........................................................................................17
表2-2 P. fluorescens strain P17 及Spirillum sp. strain NOX 菌屬利用
基質之差異性比較...........................................................17
表2-2 P. fluorescens strain P17 及Spirillum sp. strain NOX 菌屬利用
基質之差異性比較(續)....................................................18
表2-2 P. fluorescens strain P17 及Spirillum sp. strain NOX 菌屬利用
基質之差異性比較(續)....................................................19
表2-2 P. fluorescens strain P17 及Spirillum sp. strain NOX 菌屬利用
基質之差異性比較(續)....................................................20
表2-3 AOC 分析方法比較..........................................................21
表2-4 AOC-P17 及AOC-NOX 產率之比較..............................22
表2-5 薄膜之分類與功能............................................................24
表2-6 各式膜組件優缺點比較....................................................26
表3-1 Strain P17 及Strain NOX 之鑑定結果............................51
表3-2 Chemostat medium 培養基成分.......................................61
表3-3 水質分析方法彙整...........................................................63
表4-1 高級淨水流程之水質參數比較.......................................64
表4-2 P. fluorescens strain P17 及Spirillum sp.strain NOX 兩株純菌
之生化鑑定結果...............................................................70
表4-3 P17 與NOX 對基質利用率之相關研究比較.................74
表4-4 Chemostat medium 培養基成分.......................................78
表4-5 連續式薄膜反應程序進出流水質特性...........................81
參考文獻 References
參考文獻
AWWARF, Assimilable organic carbon measurement techniques, AWWA Research Foundation and American Water Works Association, 1993.
AWWARF, Characterization of natural organic matter and its relationship to treatability, AWWA Research Foundation and American Water Works Association, 1993.
Berthold et al., Replacement of secondary clarification by membrane separation-results with tubular, plate and hollow fibre modules, Water Science and Technology. Vol. 40, No. 4-5 , 311-320, 1999.
Berthold Gunder and Karlheinz Krauth, Replacement of secondary clarification by membrane separation – results with plate and hollow fiber modules, Water Science and Technology. Vol.38, No. 4-5, 383-393, 1998.
Boccelli, D. L., Tryby, M. E., Uber, J. G. & Summers, R. S., A reactive species model for chlorine decay and THM formation under rechlorination conditions, Water Research. Vol. 37, No. 11,  2654-2666, 2003.
Charnock, C., Kjø′nnø′ , O., Assimilable organic carbon and biodegradable organic carbon in Norwegian raw and drinking waters, Water Research. Vol. 34, No. 10, 2629-2642, 2000.
Cicek, N., Franco, J.p., Suidan, M. T., Urbain , V. and Manem, J., Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in treatment of wastewater containing high-molecular-weight compounds, Water Environmental Research. Vol. 71, 64-70, 1999.
Dosoretz, C.G., Boddeker, K.W., Removal of trace organics from water using a pumped bed-membrane bioreactor with powdered activated carbon, Journal Membrane Science. Vol. 239, 81-90, 2004.
El Hani Bouhabila, Roger Ben Aïm and Hervé Buisson Bouhabila, Fouling characterisation in membrane bioreactors, Separation and Purification Technology. Vol. 22-23, 123-132, 2001.
Escobar, I. C., Hong, S. and Randall, A. A., Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membrane, Journal of Membrane Science. Vol. 175, 1-17, 2000.
Escobar, I.C. and Randall, A.A., Sample storage impact on the assimilable organic carbon (AOC) and biostability, Water Research. Vol. 34, No. 5, 1680-1686, 2000.
Fan, F. S., Zhou, H. D., Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment, Environmental Science and Technology. Vol. 41, No. 7, 2523-2528, 2007.
Gai, X. J., Kim, H. S., The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment, Desalination. Vol. 225, 288-300, 2008.
Gibbs, R. A., Scutt, J. E., and Croll, B. T., Assimilable organic carbon concentrations and bacterial numbers in a water distribution, Water Science and Technology. Vol. 27, No. 3-4, 159-166, 1993.
Günder, B., The membrane-coupled activated sludge process in municipal wastewater treatment, Technomic Publishing Co. Inc., Lancaster, PA, USA , 2001.
Hong, S., Escobar, I. C., Hershey-Pyle, J., Hobbs, C., Cho, J.,Biostability characterization in a full scale nanofiltration / reverse osmosis (NF/RO) treatment system, Journal American Water Works Association. Vol. 97, No. 5, 101-110, 2005.
Huang, H., Lee, N. H., Young, T., Gary, A., Lozier, J. C., Jacangelo, J. G., Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions, Water Research. Vol. 41, No. 17, 3823-3832, 2007.
Humbert, H., Gallard, H., Jacquemet, V., Croue′ , J. P., Combination of coagulation and ion exchange for the reduction of UF fouling properties of a high DOC content surface water, Water Research. Vol. 41, No. 17, 3803-3811, 2007.
In-Soung Chang, Soon-Ouk Bag, Chung-Hak Lee, Effects of membrane fouling on solute rejection during membrane filtration of activated sludge, Process Biochemistry.Vol. 36, 855-860, 2001.
Joret, J. C., Levi, Y., Dupin, T., and Gilbert, M., Rapid methods for estimating bioliminable organic carbon in water, Proceedings American Water Works Association Annual Conference, Orlando, FL, 1998.
Karnik, B. S., Davies, S. H., Baumann, M. J., Masten, S. J., The effects of combined ozonation and filtration on disinfection by-product formation, Water Research. Vol. 39, No. 13, 2839-2850, 2005.
Kim, H. S., K. H., T. S., O. S., Development of a microfilter separation system coupled with a high dose of powdered activated carbon for advanced water treatment, Desalination. Vol. 186, 215-226, 2005.
Langlais, B., Reckhow, D. A., and Brink, D. R., Practical application of Ozone, Ozone In Water Treatment : Application and Engineering. AWWARF and Lewis Publishers, Chelsea, Michigan, 1991.
LeChevallier, M. W., Babcock, T. M. and Lee, R. G., Examination and characterization of distribution system biofilms, Applied and Environmental Microbiology. Vol. 53, No. 12, 2714-2724, 1987.
LeChevallier, M. W., Schulz, W. and Lee, R. G., Bacteria nutrient in drinking water, Applied and Environmental Microbiology. Vol. 57, No. 3, 857-862, 1991.
Lee, S. H., O’Connor, J. T. and Banerji, S. K., Biologically mediated corrosion and its effects on water quality in distribution systems, Journal American Water Works Association. Vol. 72, No. 11, 636-645, 1980.
Lehtola M. J., Miettinen I. T., Vartianinen T., Myllykangas T., Martikainen P. J.,Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water, Water Research. Vol. 35, No. 7, 1635-1640, 2001
Levy, R.V., Hart, F. L. and Cheetham, R. D., Occurrence and public health significance of invertebrates in drinking water systems, Journal American Water Works Association. Vol. 78, No. 9, 105-110, 1986.
Li, X. Y., Chu, H. P., Membrane bioreactor for drinking water treatment of polluted surface water supplies, Water Research. Vol. 37, No. 19, 4781-4791, 2003.
Membrane Products Dept. b. Polyethylene Microporous Hollow fiber Membrane. Mitsubishi Rayon Co., LTD.
Mark D. Williams, Massoud Pirbazari, Membrane bioreactor process for removing biodegradable organic matter from water, Water Research. Vol. 41, 3880-3893, 2007.
Nazim, C., Hans, W., Makram, T. S. , Brian, E. W., Vincent, U. andJacque , M., Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds, Water Research. Vol. 32, No. 5, 1553-1563, 1998.
Nobel, P. A., Clark, D. L. and Olson, B. H., Biological stability of groundwater, Journal American Water Works Association. Vol. 88, No. 5, 87-96, 1996.
Ogoshi, M., Suzuki, Y., Application of membrane separation to an easily installed municipal wastewater treatment plant, International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, 250-255, 1999.
Pearce, G. K., Heijnen, M. & Reckhouse, J., Using ultrafiltration membrane technology to meet UK cryptosporidium regulations, Journal Membrane Science. Vol. 2002, No. 1, 6-9, 2002.
Pierre Cote Herve Buisson, Charles pound immersed membrane activated sludge for the reuse of municipal wastewater, Desalination. Vol. 113, 189-196, 1997.
Rittmann, B. E. and Snoeyink, V. L., Achieving biologically stable drinking water, Journal American Water Works Association. Vol. 76, No. 10, 106-114, 1984.
Sagbo, O., Sun, Y. X., Hao, A. L. and Gu, P., Effect of PAC addition on MBR process for drinking water treatment, Separation and Purification Technology. Vol. 58, No. 3, 320-327, 2008.
Seo, G. T., Lee, T., Moon, B. H., Lim, J. H., Lee, K. S., Ohgaki, S., Two stage intermittent aeration membrane bioreactor for simultaneous or nic, nitrogen and phosphorus removal, International specialized conference on membrane technology in environmental management, Tokyo, Japan, 234-241, 1999.
Seo, G. T., Moon, C. D., Chang, S. W., Lee, S. H., Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment, Water Science and Technology. Vol. 50, No. 8, 81-87, 2004.
Servais, P., Billen, G. and HascoëT, M. C., Determination of the biodegradable fraction of dissolved organic matter in waters, Water Research. Vol. 21, No. 4, 445-450, 1987.
Servais, P., Laurent, P. and Randon, G., Comparison of the bacterial dynamics in various french distribution system, Journal of Water Supply : Research and Technology Aqua. Vol. 44, No. 1, 10-17, 1995.
Su, D. J., Gao, N. Y., A study of removing organic matters in slightly-polluted water by an ozone-active carbon combined process, Industrial Water&Wastewater, Vol. 32, 26-28, 2005.
Tatsuki Ueda and Kenji Hata, Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration, Water Research. Vol. 33, No. 12, 2888-2892, 1999.
Te Welscher, R. A. G., Schellart, J. A. and de Visser, P. M., Experience with fifteen year of drinking water distribution without a chlorine Residual, specialized Conference on Drinking Water Distribution with or without Disinfectant Residual, 28-30 Sep. 1998, Mülheim an der Ruhr, Germany , pp.XIX-1-XIX8.
Thompson , D., Mourato , D., Penny , J., Demonstration of the zenogem process for municipal wastewater treatment, WEF Annual Conference, Chicago, 1998.
Thurman, E. M., Amount of organic carbon in natural water, Organic Geochemistry of Nature Water, 15-17, 1985.
Tian, J. Y., Liang, H., You, S. J., Tian, S., Li ,G. B., Membrane coagulation bioreactor(MCBR) for drinking water treatment, Water Research. Vol. 42, 3910-3920, 2008.
Tiana Jia-yu, Liang Heng, Yang Yan-ling, Tian Sen, Li Gui-bai, Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR), Journal Membrane Science. Vol. 325, 262-270, 2008.
Tom Stephenson, Simon Judd, Bruce, Jefferson and Keith Brindle, Membrane bioreactors for wastewater treatment, IWA, LONDON, 2000.
Tsai, H. H., Ravindran, V., Williams, M. D., Pirbazari, M., Forecasting the performance of membrane bioreactor process for groundwater denitrification, Journal of Environmental Engineering and Science. Vol. 3, No. 6, 507-521, 2004.
Van Der Kooij, D. & Veenendaal, H. R., Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures, SWE 95.002, KIWA, Nieuwegein, Netherlands, 1995.
Van Der Kooij, D., Assimilable organic carbon (AOC) in drinking Water, Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York, 1990.
Van Der Kooij, D., Hijnen, W. A. M., and Kruithof, J. C., The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water, Ozone: Science & Engineering. Vol. 11, 297-311, 1989.
Van der Kooij, D., van Lieverloo, J. H. M., Schellart, J. A. and Hiemstra, Distributing drinking water without disinfectant highest achievement or height of folly, Journal of Water Supply: Research and Technology Aqua.Vol. 48, No.1, 31-37, 1999.
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M., Determining the concentration of easily assimilable organic carbon in drinking water, Journal American Water Works Association. Vol. 74, No. 10, 540-545, 1982.
Wang, X. D., Wang, L., Liu, Y., Duan, W. S., Ozonation pretreatment for ultrafiltration of the secondary effluent, Journal of Membrane Science. Vol. 287, No. 2, 187-191, 2007.
Wen C., Huang X., Qian Yi., Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration, Process biochemistry. Vol. 35, 335-340, 1999.
Wierenga, J. T., Recovery of coliforms in the presence of free chlorine residual, Journal of American Water Works Association. Vol. 77, No. 11, 83-88, 1985.
Wisniewski, C. and Grasmick, A., Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloids and Surfaces. Vol. 138, No. 2-3, 403-411, 1998.
Xing, C. H., Qian, Y., Wen, X. H., Wu, W. Z., Sun, D., Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment, Journal Membrane Science. Vol. 191, 31-42, 2001.
Yamamoto K., Membrane filtration in rapid filtration, Biological Filtration and Membrane Filtration, Gihodo Shuppan, Tokyo, pp.255, 1994.
Zhang, B., Yamamoto, K., Ohgaki, S. and Kamiko, N., Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment reclamation, Water Science and Technology. Vol. 35, No. 6, 37-44, 1997.
Zhang, M. M., Li, C., Benjamin, M. M., Chang, Y. J., Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment, Environmental Science and Technology. Vol. 37, No. 8, 1663-1669, 2003.
賴文亮,各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程研究所,2002。
朱振華,自來水配水管線中水質生物穩定性之研究,國立中興大學環境工程研究所,2004。
中華民國自來水協會,淨水程序與清水水質生物穩定性間關係之研究,1999。
中興工程顧問社,自來水水質生物穩定性評估方法,2001。
陳建銘,生物薄膜程序處理合成生活污水,國立交通大學環境工程研究所,2002。
陳仕旻,利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程研究所,2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.38.3
論文開放下載的時間是 校外不公開

Your IP address is 18.224.38.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code