Responsive image
博碩士論文 etd-0727110-000414 詳細資訊
Title page for etd-0727110-000414
論文名稱
Title
圖的著色,圓環列表著色和相適對局著色
Colouring, circular list colouring and adapted game colouring of graphs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-26
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
相適對局著色、Cartesian乘積圖、著色數、局部k樹、平面圖、著色、圓環列表著色數、連續列表、圓環連續列表著色數、相適、對局著色
Cartesian product, chromatic number, adapted game chromatic number, game chromatic number, circular consecutive choosability, adapted, consecutive choosability, partial k-tree, circular chromatic number, planar, 3-colouring, circular choosability
統計
Statistics
本論文已被瀏覽 5791 次,被下載 1012
The thesis/dissertation has been browsed 5791 times, has been downloaded 1012 times.
中文摘要
本論文探討了有關圖形的著色、圓環列表著色以及相適對局著色。圖形的著色上,本論文提供了一個充分條件,使得一個平面圖可以由三個顏色給予著色。假設G是一個平面圖。令H_G為另一個相對於G的圖,其中H_G的頂點集合為V (H_G) ={C : C是圖形G的圈且長度為4或6或7},而邊集合為E(H_G) = {C_iC_j : 若C_i與C_j在圖G內有共同的邊}。我們證明了,對於一個平面圖G,若所有長度為3的圈和長度為5的圈皆不與長度為3至7的圈含有共同的邊,且圖形H_G是一個森林(不包含任何的圈),則圖形G是可以由三個顏色給予著色。
對於圓環列表著色數,針對任意的有限圖G,我們考慮其列表僅為一連續區段,並將之稱為圓環連續列表著色數。本論文探討了圓環連續列表著色數、一般著色數以及圓環著色數的基本關係。對於任意的有限圖G,其關係為:一般著色數-1 &#8804; 圓環連續列表著色數 < 2倍的圓環著色數。我們同時判定了完全圖、樹、圈、平衡完全二部圖以及某些完全多部圖的圓環連續列表著色數。此外,對於某些特殊類型圖,我們也提供了其圓環連續列表著色數的上界以及下界。
在相適對局著色數的議題上, 本論文證明了樹的最大相適對局著色數為3;外平面圖的最大相適對局著色數為5;局部k樹的最大相適對局著色數介在k+2至2k+1之間;平面圖的最大相適對局著色數介在6至11之間。對於一些特定類型的Cartesian乘積圖,例如:有關局部k樹、外平面圖以及平面圖的Cartesian乘積圖,我們也提供了其相適對局著色數的上界。
Abstract
This thesis discusses colouring, circular list colouring and adapted game colouring of graphs. For colouring, this thesis obtains a sufficient condition for a planar graph to be 3-colourable. Suppose G is a planar graph. Let H_G be the graph with vertex set V (H_G) = {C : C is a cycle of G with |C| &#8712; {4, 6, 7}} and edge set E(H_G) = {CiCj : Ci and Cj have edges in common}. We prove that if any 3-cycles and 5-cycles are not adjacent to i-cycles for 3 &#8804; i &#8804; 7, and H_G is a forest, then G is 3-colourable.
For circular consecutive choosability, this thesis obtains a basic relation among chcc(G), X(G) and Xc(G) for any finite graph G. We show that for any
finite graph G, X(G) &#8722; 1 &#8804; chcc(G) < 2 Xc(G). We also determine the value of chcc(G) for complete graphs, trees, cycles, balanced complete bipartite graphs and some complete multi-partite graphs. Upper and lower bounds for chcc(G) are given for some other classes of graphs.
For adapted game chromatic number, this thesis studies the adapted game chromatic number of various classes of graphs. We prove that the maximum
adapted game chromatic number of trees is 3; the maximum adapted game chromatic number of outerplanar graphs is 5; the maximum adapted game
chromatic number of partial k-trees is between k + 2 and 2k + 1; and the
maximum adapted game chromatic number of planar graphs is between 6 and 11. We also give upper bounds for the Cartesian product of special classes of graphs, such as the Cartesian product of partial k-trees and outerplanar graphs, or planar graphs.
目次 Table of Contents
1 Introduction 1
1.1 Some basic notations . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 3-colourability of planar graphs . . . . . . . . . . . . . . . . . 4
1.3 Circular chromatic number . . . . . . . . . . . . . . . . . . . . 5
1.4 Circular consecutive choosability . . . . . . . . . . . . . . . . 6
1.5 Adapted chromatic number . . . . . . . . . . . . . . . . . . . 8
1.6 Game chromatic number . . . . . . . . . . . . . . . . . . . . . 9
1.7 Adapted game chromatic number . . . . . . . . . . . . . . . . 10
1.8 Review of results of this thesis . . . . . . . . . . . . . . . . . . 11

2 Cycle adjacency of planar graphs and 3-colourability 14
2.1 3-colour problem and known results . . . . . . . . . . . . . . . 14
2.2 Configuration on HG and some notations . . . . . . . . . . . . 19
2.3 Proof of Theorem 2.2.1 . . . . . . . . . . . . . . . . . . . . . . 22
3 Circular consecutive choosability of graphs 28
3.1 Circular chromatic number and circular choosability . . . . . . 28
3.2 Circular consecutive choosability . . . . . . . . . . . . . . . . 32
3.3 Equivalent definitions . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Some general bounds on chcc(G) . . . . . . . . . . . . . . . . . 39
3.5 Trees, cycles and complete graphs . . . . . . . . . . . . . . . . 41
3.6 Bounds on chcc(G) for special graphs . . . . . . . . . . . . . . 44

4 Adapted game colouring of graphs 50
4.1 Basic definitions and related concepts . . . . . . . . . . . . . . 50
4.2 Partial k-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Cartesian product graphs . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 78
參考文獻 References
[1] H. L. Abbott and B. Zhou, On small faces in 4-critical graphs, Ars
Combin., 32 (1991), 203–207.
[2] V.A. Aksionov, L.S. Mel’nikov, Some counterexamples associated with
the three color problem, J. Combin. Theory Ser. B, 28 (1980), 1–9.
[3] K. Appel and W. Haken, Every planar map is four colorable. Part I.
Discharging, Illinois J. Math., 21 (1977), 429–490.
[4] K. Appel and W. Haken, Every planar map is four colorable. Part II.
Reducibility, Illinois J. Math., 21 (1977), 491–567.
[5] A. Archer, On the upper chromatic numbers of the reals, Discrete Math.,
214 (2000), 65–75.
[6] T. Bartnicki, J. Grytczuk, H. A. Kierstead, and X. Zhu, The mapcoloring
game, Amer. Math. Monthly, 114 (2007), no. 9, 793–803.
[7] B. Bauslaugh and X. Zhu, Circular coloring of infinite graphs, Bulletin
of The Institute of Combinatorics and its Applications, 24 (1998), 79–80.
[8] O. V. Borodin, To the paper of H. L. Abbott and B. Zhou on 4-critical
planar graphs, Ars Combin., 43 (1996), 191–192.
[9] O. V. Borodin, Structural properties of plane graphs without adjacent
triangles and application to 3-colourings, J. Graph Theory, 21 (1996),
183–186.
[10] O. V. Borodin and A. N. Glebov, A sufficient condition for planar graph
to be 3-colorable, Diskret. analyz i issled. oper., 10 no. 3 (2004)(in Russian),
3–11.
[11] O. V. Borodin and A. N. Glebov, Planar graphs without 5-cycles and
with minimum distance between triangles at least two are 3-colorable,
Manuscript (2008).
[12] O. V. Borodin, A. N. Glebov, T. R. Jensen and A. Raspaud, Planar
graphs without triangles adjacent to cycles of length from 3 to 9 are 3-
colorable, Siberian Electronic Mathematical Reports, 3 (2006), 428–440.
[13] O. V. Borodin, A. N. Glebov, M. Montassier and A. Raspaud, Planar
graphs without 5- and 7-cycles and without adjacent triangles are 3-
colorable, J. Combin. Theory Ser. B, 99 (2009), 668–673.
[14] O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour,
Planar graphs without cycles of length from 4 to 7 are 3-colorable, J.
Combin. Theory Ser. B, 93 (2005), 303–311.
[15] O. V. Borodin, S. J. Kim, A. V. Kostochka and D. B. West, Homomorphisms
from sparse graph with large girth, J. Combin. Theory Ser. B, 90
(2004), no. 1, 147–159.
[16] O. V. Borodin, M. Montassier and A. Raspaud, Planar graphs without
adjacent cycles of length at most seven are 3-colorable, Discrete Math.,
310 (2010), 167–173.
[17] O. V. Borodin and A. Raspaud, A sufficient condition for planar graph
to be 3-colorable, J. Combin. Theory Ser. B, 88 (2003), 17–27.
[18] G. R. Brightwell and Y. Kohayakawa, Ramsey properties of orientations
of graphs, Random Structures and Algorithms, 4 (1993) 413–428.
[19] C. Chou, W. Wang and X. Zhu, Relaxed game chromatic number of
graphs, Discrete Math., 262 (2003), 89–98.
[20] M. Cochand and P. Duchet, A few remarks on orientations of graphs
and Ramsey theory, in Irregularities of Partitions (G. Hal′asz, V.T. S′os
eds.), Algorithms and Combinatorics, 8 (1989), 39–46.
[21] M. Cochand and G. Karolyi, On a graph coloring problem, Discrete
Math., 194 (1999), 249–252.
[22] C. Dunn and H. A. Kierstead, A simple competitive graph coloring algorithm.
II. Dedicated to Adrian Bondy and U. S. R. Murty, J. Combin.
Theory Ser. B, 90 (2004), no. 1, 93–106.
[23] C. Dunn and H. A. Kierstead, A simple competitive graph coloring algorithm.
III, J. Combin. Theory Ser. B, 92 (2004), no. 1, 137–150.
[24] C. Dunn and H. A. Kierstead, The relaxed game chromatic number of
outerplanar graphs, J. Graph Theory, 46 (2004), no. 1, 69–78.
[25] Z. Dvorak, D. Kral and Robin Thomas, Coloring planar graphs with
triangles far apart, manuscript, (2009).
[26] P. Erdos and A. Gyarfas, Split and balanced colorings of complete graphs,
Discrete Math., 200 (1999), 79–86.
[27] P. Erdos, A. L. Rubin and H. Taylor, Choosability in graphs, Congr.
Numer., 26 (1979), 125–157.
[28] L. Esperet, M. Montassier and X. Zhu, Adapted list colouring of planar
graphs, J. Graph Theory, 62 (2009), no. 1, 127–138.
[29] U. Faigle, U. Kern, H. A. Kierstead and W. T. Trotter, On the game
chromatic number of some classes of graphs, Ars Combinatoria, 35
(1993), 143–150.
[30] T. Feder and P. Hell, Full constraint satisfaction problems, SIAM J.
Comput., 36 (2006), 230–246.
[31] T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of list partitions,
SIAM J. Discrete Math., 16 (2003), 449–478.
[32] T. Feder, P. Hell and W. Xie, Matrix partitions with finitely many obstructions,
Electron. J. Combin., 14 (2007), no. 1, RP 58, 17 pp.
[33] A. Galluccio, L. Goddyn and P. Hell, High-girth graphs avoiding a minor
are nearly bipartite, J. Combin. Theory Ser. B, 83 (2001), 1–14.
[34] M. R. Garey, D. S. Johnson and L. J. Stockmeyer, Some simplified NPcomplete
graph problems, Theoretical Computer Science, 1 (1976), 237–
267.
[35] H. Grotzsch, Ein dreifarbensatz fur dreikreisfreie netze auf der kugel,
Math.-Nat. Reihe, 8 (1959), 109–120.
[36] A. Guan and X. Zhu, Adaptable choosability of planar graphs with sparse
short cycles, Discrete Math., 309 (2009), 6044–6047.
[37] D. J. Guan and X. Zhu, Game chromatic number of outerplanar graphs,
J. Graph Theory, 30 (1999), 67–70.
[38] I. Havel, On a conjecture of Grunbaum, J. Combin. Theory Ser. B, 7
(1969), 184–186.
[39] F. Havet, R.J. Kang, T. M‥uller, J.-S. Sereni, Circular choosability, J.
Graph Theory, 61 (2009), no. 4, 241–270.
[40] P. Hell and X. Zhu, On the adaptable chromatic number of graphs, European
J. Combin., 29 (2008), 912–921.
[41] T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience,
New York, (1995).
[42] H. A. Kierstead, A simple competitive graph coloring algorithm, J. Combin.
Theory (B), 78 (2000), 57–68.
[43] H. A. Kierstead and W. T. Trotter, Planar graph coloring with an uncooperative
partner, J. Graph Theory, 18 (1994), 569–584.
[44] H. A. Kierstead and Z. Tuza, Game chromatic number and treewidth,
manuscript, (1996).
[45] H. A. Kierstead, D. Yang, C. Yang and X. Zhu, Adapted game colouring
of graphs, manuscript, (2009).
[46] W. Klostermeyer and C. Q. Zhang, (2 + _)-colouring of planar graphs
with large odd girth, J. Graph Theory, 33 (2000), 109–119.
[47] A. Kostochka and X. Zhu, Adapted list coloring of graphs and hypergraphs,
SIAM J. Discrete Math., 22 (2008), no. 1, 398–408.
[48] P. Lam, W.C. Shiu and Z.M. Song, The 3-choosability of plane graphs
of girth 4, Discrete Math., 294 (2005), no. 3, 297–301.
[49] W. Lin, D. Yang, C. Yang and X. Zhu, Circular consecutive choosability
of graphs, Taiwanese Journal of Mathematics, 12 (2008), no. 4, 951–968.
[50] D. Liu, Cincruclar consecutive choosability for every cycle and for _2,2,4
is 2, manuscript, (2007).
[51] M. Montassier, A. Raspaud and W. Wang, Bordeaux 3-color conjecture
and 3-choosability, Discrete Math., 306 (2006), no. 6, 573–579.
[52] M. Montassier, A. Raspaud, W. Wang and Y. Wang, A relaxation of
Havel’s 3-color problem, Inform. Process. Lett., 107 (2008), no. 3-4, 107–
109.
[53] M. Montassier, A. Raspaud and X. Zhu, An upper bound on adaptable
choosability of graphs, European J. Combin., 30 (2009), no. 2, 351–355.
[54] B. Mohar, Choosability for the circular chromatic number,
http://www.fmf.uni-lj.si/_mohar, (2002).
[55] T. Muller and R.J. Waters, Circular choosability is rational, J. Combin.
Theory Ser. B, 99 (2009), no. 5, 801–813.
[56] S. Norine, On two questions about circular choosability, J. Graph Theory,
58 (2008), no. 3, 261–269.
[57] S. Norine, T.-L. Wong and X. Zhu, Circular choosability via combinatorial
Nullstellensatz, J. Graph Theory, 59 (2008), no. 3, 190–204.
[58] Z. Pan and X. Zhu, Every 2-choosable graph is circular consecutive 2-
choosable, manuscript, (2007).
[59] A. Raspaud and X. Zhu, List circular colouring of trees and cycles, J.
Graph Theory, 55 (2007), 249–265.
[60] V. Rodl, A generalization of Ramsey theorem, in Graphs, Hypergraphs,
and Block Systems, Zielona Gora, (1976), 211–220.
[61] D. P. Sanders and Y. Zhou, A note of the Three Color Problem, Graphs
Combin., 11 (1995), 91–94.
[62] E. R. Scheinerman, D. H. Ullman, Fractional Graph Theory, Wiley-
Interscience Series in Discrete Mathematics and Optimization (John
Wiley & Son, New York, 1997).
[63] L. Shen and Y. Wang, A sufficient condition for a planar graph to be
3-choosable, Inform. Process. Lett., 104 (2007) 146–151.
[64] R. Steinberg, The state of the three color problem in: Quo Vadis, Graph
Theory?, Ann. Discrete Math., 55 (1993), 211–248.
[65] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory
Ser. B, 62 (1994), no. 1, 180–181.
[66] C. Thomassen, 3-List coloring planar graphs of girth 5, J. Combin. Theory
Ser. B, 64 (1995), 101–107.
[67] A. Vince, Star chromatic number, J. Graph Theory, 12 (1988), 551–559.
[68] V. G. Vizing, Colouring the vertices of a graph in prescribed colours (in
Russian), Metody Diskret. Anal., 29 (1976), 3–10.
[69] M. Voigt, List colorings of planar graphs, Discrete Math., 120 (1993),
215–219.
[70] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete
Math., 146 (1995), 325–328.
[71] W. Wang and M. Chen, Planar graphs without 4,6,8-cycles are 3-
colorable, Sci. China Ser. A, 50 (2007), no. 11, 1552–1562.
[72] Y. Wang, M. Chen and L. Shen, Plane graphs without cycles of length
4, 6, 7 or 8 are 3-colorable, Discrete Math., 308 (2008), 4014–4017.
[73] Y. Wang, H. Lu and M. Chen, A note on 3-choosability of planar graphs,
Inform. Process. Lett., 105 (2008), 206–211.
[74] Y. Wang and L. Shen, Planar graphs without cycles of length 4, 7, 8, or
9 are 3-choosable, manuscript.
[75] Y. Wanga, H. Lua and M. Chen, Planar graphs without cycles of length
4, 5, 8 or 9 are 3-choosable, Discrete Math., 310 (2010), no. 1, 147–158.
[76] R.J. Waters, Consecutive list colouring and a new graph invariant, J.
London Math. Soc., (2) 73 (2006), 565–585.
[77] B. Xu, A 3-color Theory on plane graph without 5-circuits, Acta Math.
Appl. Sinica, 23 no. 6 (2007), 1059–1062.
[78] D. Yang, Activation strategy for relaxed asymmetric coloring games, Discrete
Math., 309 (2009) no. 10, 3323–3335.
[79] D. Yang, Relaxed very asymmetric coloring games, Discrete Math., 309
(2009) no. 5, 1043–1050.
[80] C. Yang and X. Zhu, Cycle adjacency of planar graphs and 3-
colourability, manuscript, (2010).
[81] L. Zhang and B. Wu, A note on 3-choosability of planar graphs without
certain cycles, Discrete Math., 297 (2005), no. 1-3, 206–209.
[82] L. Zhang and B. Wu, Three-coloring planar graphs without certain small
cycles, Graph Theory Notes of N. Y., 46 (2004) 27–30.
[83] X. Zhu, Circular chromatic number: a survey, Discrete Math., 229 (1-3)
(2001), 371–410.
[84] X. Zhu, Circular choosability of graphs, J. Graph Theory, 48 (2005),
210–218.
[85] X. Zhu, Game coloring number of pseudo partial k-trees, Discrete Math.,
215 (2000), 245–262.
[86] X. Zhu, Game coloring the Cartesian product of graphs, J. Graph Theory,
59 (2008), no. 4, 261–278.
[87] X. Zhu, Recent developments in circular colouring of graphs, Topics in
Discrete Mathematics, Dedicated to Jarik Neˇsetˇril on the Occasion of
his 60th Birthday, Algorithms and Combiantorics, 26 (2006), 497–550.
[88] X. Zhu, Refined activation strategy for the marking game, J. Combin.
Theory Ser. B, 98 (2008), no. 1, 1–18.
[89] X. Zhu, The circular chromatic number of planar graphs of large odd
girth, Electron. J. Combin., 8 no. 1 (2001), R25.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code