Responsive image
博碩士論文 etd-0727110-153206 詳細資訊
Title page for etd-0727110-153206
論文名稱
Title
微結構光纖之研製與應用
Fabrication and Application of Microstructured Optical Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
毛細管光纖、微結構光纖、光纖感測、光纖抽絲塔
fiber drawing tower, fiber sensing, capillary optical fiber, microstructured optical fiber
統計
Statistics
本論文已被瀏覽 5619 次,被下載 0
The thesis/dissertation has been browsed 5619 times, has been downloaded 0 times.
中文摘要
本研究的目的是利用光纖抽絲塔研製各式的毛細管光纖與微結構光纖,並且以研製成品進行溫感應用。
首先由初步石英毛細管的抽製以及製程參數上的計算,進一步到預型體的設計與製作以及利用光纖抽絲塔抽製微結構光纖。其中於製程中遭遇的種種問題,諸如:預型體結構的固定、光纖孔洞結構位置與大小、光纖外徑大小、內部加壓方式、孔洞間隙的消除…等,皆為目前製作技術上待克服的重大問題。我們將從抽絲參數的調整、不同預形體的製作方式、抽絲塔硬體設備的改良…等方面著手進行探討改善。
在藉由毛細管封管的方式與抽絲參數的搭配下,我們成功地製作出孔洞結構較為簡易的微結構光纖,但是整體結構上仍有很大的改善空間。之後,我們將以自行改良設計後的加壓方式進行研製,期以抽絲塔製作的方式達成均質且多元的微結構光纖。
我們亦以自行抽製的毛細管光纖進行光學性質測量並運用於溫度感測裝置之上,針對其感測機制與感測靈敏度進行討論。截至目前,我們製作出的溫感裝置靈敏度與操作波長呈現一線性關係,其靈敏度約為0.038nm/°C。
Abstract
In this study, we will discuss the fabrication detail about the capillary optical fiber and microstructured optical fiber (MOF) from the preform manufacture to the drawing process and apply our capillary optical fiber in a temperature sensor device.
First, we discuss the influence of the drawing parameters contribution for the fiber, and we will introduce how to design a preform and discuss how to keep our fibre geometry in drawing process by controlling the drawing parameters. For better fiber products, we need to make some important improvements such as fixing the preform geometry and designing the preform pressure or vacuum input path before the fiber drawing process. In the fiber drawing we want to control the fiber inner diameter and make the interval between three capillary tube disappear. We will solve these problems by different preform making methods or drawing tower hardware design and drawing parameter control.
Now we can successfully make single ring hole MOFs by the capillary tube sealed method. But the hole structure is not as good as expectation. We will try to design a pressure and vacuum input device to replace the capillary tube sealed method. And help us to make better and more different MOF structures.
We also used our capillary optical fiber to be a temperature sensor. We will describe the principle and the sensing sensitivity of our sensing device in this study. Our temperature sensing device shows a linear relationship between the temperature and operation wavelength, and the sensing sensitivity is 0.038nm/°C
目次 Table of Contents
中文摘要
英文摘要
誌 謝
第一章 緒 論 1
第二章 微結構光纖與毛細管光纖之理論 3
2.1 毛細管光纖製程探討 3
2.1.1抽絲參數數值模型 3
2.1.2抽絲參數探討 8
2.2 微結構光纖製程探討 12
2.2.1 微結構光纖預形體製作 13
2.2.2 微結構光纖抽絲製程 15
第三章 微結構光纖與毛細管光纖之研製 17
3.1 預型體製程 17
3.2 抽絲塔與抽絲流程簡介 22
3.3 毛細管光纖研製 25
3.4 微結構光纖研製 28
第四章 溫度感測應用 40
4.1 光纖感測器簡介 40
4.2 溫度感測裝置說明 42
4.3 溫度感測裝置製作 44
4.4 溫度感測裝置模擬與測試 46
第五章 結論 55
參考文獻 58
參考文獻 References
[1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493, 1960.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides optical frequencies,” Proceedings of IEE 113, 1151-1158, 1966.
[3] F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Applied Physics Letters 17, 423-425, 1970.
[4] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Optics Letters 21, 1547-1549, 1996.
[5] A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201-227, 2002.
[6] C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation,” Journal of Lightwave Technology 26, 791-798, 2008.
[7] R. M. Wynne, “A Fabrication Process for Microstructured Optical Fibers,” Journal of Lightwave Technology 24, 4304-4313, 2006.
[8] S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers Part II: Numerical modeling of steady-state draw process,” Journal of Lightwave Technology 23, 2255-2266, 2005.
[9] M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, 2007.
[10] H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fibre,” Optics Communications 273, 133-137, 2007.
[11] Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Optics Express 14, 5541-5547, 2006.
[12] P. L. Falkenstein and B. Justus, “Fused Array Preform Fabrication Of Holey Optical Fibers,” U.S. Patent No. 0154154, 2007.
[13] G. Wei, Z. Gui-YAO, and N. Yang-jing, “Fabrication of microstructured optical fiber using the improved stack-and-draw method,” Journal of Optical electronics Laser 17, 1035-1038, 2006.
[14] F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philosophical Transactions of the Royal Society A 364, 3439, 2006.
[15] G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, and S. B. Lee, “Novel Fabrication Process of Controlling Aspect Ratio of the Hollow Core in Photonic Bandgap Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, paper JThA8, 2006
[16] 蔡昌宇, “光纖感測器與主結構間之應變傳遞分析與量測研究,” 碩士畢業論文, 元智大學, 2003.
[17] D. Donlagic and M. Zavrsnik, “Fibre-optic microbend sensor structure,” Optics Letters 22, 837-839, 1997.
[18] Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Applied Optics 46, 2516-2519, 2007.
[19] Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Measurement Science and Technology 17, 1129, 2006.
[20] J. Yongmin, L. Sejin, H.L. Byeong, and O. Kyunghwan, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Optics Letters 33, 2934-2936, 2008.
[21] Y. J. Rao “Recent progress in applications of in-fibre Bragg grating sensors,” Optics and Lasers in Engineering 31, 297-324, 1999.
[22] Y. J. Kim, U. C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber grating, ” Optics Letters 27, 1297-1299, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.70.131
論文開放下載的時間是 校外不公開

Your IP address is 3.139.70.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code