Responsive image
博碩士論文 etd-0727110-154222 詳細資訊
Title page for etd-0727110-154222
論文名稱
Title
台灣東部尖頭細身飛魚耳石年齡與成長研究及其在漁業管理上之意涵
Age and growth of bony flyingfish (Hirundichthys oxycephalus) off the eastern Taiwan through otolith examination and it’s implication in fisheries management
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-26
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
飛魚漁業管理、日周輪、耳石、尖頭細身飛魚、年齡與成長
otolith, age and growth, Bony flyingfish, daily growth increment
統計
Statistics
本論文已被瀏覽 5655 次,被下載 2147
The thesis/dissertation has been browsed 5655 times, has been downloaded 2147 times.
中文摘要
尖頭細身飛魚 (Hirundichthys oxycephalus) 為台灣東北部飛魚卵漁業主要漁獲對象,亦為台灣東部海域飛魚優勢種之一。近年來由於飛魚產量持續下降,使人們逐漸意識到資源可能已達過漁之狀態,為有效漁業管理及資源永續利用,有必要進行其管理程序必須了解之年齡與成長研究。本研究採樣分為採集受精卵進行人工孵化飼育及採集野外魚體樣本分析年齡兩部分,首先自基隆嶼海域採集尖頭細身飛魚之受精卵約200克進行飼育,共計飼養天數達208日;採集其中108尾體長 (FL) 介於5.4~78.6 mm之樣本進行分析,證實飛魚三對耳石 (扁平石、星狀石及礫石) 成長輪之形成皆具日週性,其中扁平石及礫石皆在孵化後第1天形成首輪,星狀石則在孵化後第11天形成首輪,並依據迴歸係數、標準誤、最大可判讀年齡、判讀率及製備方法選定星狀石做為本研究之年齡判讀依據。
  此外在2009年4月至2010年3月間,於花蓮、台東、綠島及蘭嶼海域以流刺網捕獲野外飛魚183尾體長 (FL) 介於54.0~229.1 mm之樣本。依據人工飼育試驗之結果,日齡相當於星狀石所判讀之日輪加11天。以此日齡與相對應之體長,利用電腦套適求得范式成長參數之極限體長為253.9 mm及成長速率為0.00753 mm d-1。以耳石上判讀的日週輪結果得以反推產卵日,並扣除孵化所需的三日即可推估產卵日期,並由產卵日頻度圖中發現台灣東部海域之尖頭細身飛魚可能有夏季(5月上旬至8月上旬) 及冬季 (11月下旬至隔年1月下旬) 兩個加入群。
本研究結果顯示尖頭細身飛魚應屬壽命短、成長快速之魚種,因此在漁業管理上,只要降低漁獲壓力,給予適當留存量,資源應能快速恢復。又研究所發現之兩個加入群,代表台灣東部可能為單一系群,也可能為兩個系群,在漁業管理手法上將有相當不同的差異,因此建議進一步透過生殖生物學研究予以確認。
Abstract
 Bony flyingfish (Hirundichthys oxycephalus) is the primary component of flyingfish-egg fishery captures in the northeastern waters of Taiwan, and is also one of the dominant species of flyingfish in eastern waters of Taiwan. In recent years, people are conscious of overfishing in negarding to the continuously decreasing flyingfish resources. For rational management and sustainability of the fishery, there is an urgent need to study age and growth of the fish. Based on the laboratory-reared fish from the fertilized eggs collected in the wild, the daily periodicity of growth increments in three pairs of otoliths (lapillus, sagitta and asteriscus) was validated. First growth increment formed in the first day after hatching for sagitta and lupillus, and was in the eleven day after hatching for Asteriscus.
  Ages of the wild flyingfish sample of 5.4~229.1 mm FL collected by drifted gillnets in Hualian, Taitung, Lyudao and Lanyu waters during April 2009 to March 2010, were determined by daily growth increment (DGI) counting in asteriscus, as adjusted by an addition of 11 DGIs. The von Bertalanffy growth parameters of the fish were estimated to be 253.9 mm in asymptotic length and 0.00753 mm d-1 in growth coefficient. Use DGIs estimation hatch date from otolith ringing, and estimated spawning date by deduct from 3 day hatch requisition. we found 2 recruitment group in eastern Taiwan within a year, most fish hatched either in summer or winter.
In this study showing that bony flyingfish was an grew fast and had long longevity sp., therefore, on fishery management, we should decrease the fishing pressure and give them enough surplus biomass, so the biomass could recover rapidly. And we found two recruitment group, one could behalf of stock from east taiwan, and maybe it could behalf of two stocks ,on the other hand the method of fishery management should be a quite different .We suggest to confirm by the further reproductive biology research.
目次 Table of Contents
摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙VI
Abstract∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙VIII
壹、前言
1. 飛魚漁業之價值∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
2. 尖頭細身飛魚的重要性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2
3. 年齡與成長研究的重要性及方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3
4. 耳石的研究與應用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4
5. 飛魚年齡與成長研究回顧∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4
6. 研究動機∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
7. 研究目的∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6
貳、材料與方法
1. 採樣設計與生物學測定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
2. 耳石判讀日週輪前的製備過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9
3. 耳石形質測量及成長輪之判讀與計數∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
4. 以人工飼養法驗證輪紋日週性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
5. 最適耳石選定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11
6. 以日齡反推孵化日及產卵日∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11
7. 成長解析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12
參、結果
1. 樣本體長組成∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13
2. 耳石的構造∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13
3. 日齡的成長與耳石日週輪的證明∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
4. 選擇最適合定齡之耳石∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙17
5. 成長解析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
6. 孵化日及產卵日∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19

肆、討論
1. 飛魚科魚類定齡方式之決定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20
2. 耳石日週輪之應用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20
3. 成長的推估∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
4. 產卵期之差異∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23
5. 加入動態探討∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
6. 究結果在漁業管理上之意涵∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
7. 漁業之管理建議∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25

伍、結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27
陸、參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙29
柒、表∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33
捌、圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙37
參考文獻 References
張水鍇 (2008) 飛魚面面觀。漁業推廣 261:32-36。
張水鍇 (2009) 飛魚資源之地理分布及管理之研究。行政院農委會漁業署計畫報告,高雄,25頁。
邵廣昭 (2009) 台灣魚類資料庫 網路電子版。http://fishdb.sinica.edu.tw/chi/species.php?id=380881
王律棚 (2009) 台灣疊波蓋刺魚之生活史研究。國立東華大學海洋生物多樣性及演化研究所碩士論文,屏東,72頁。
Aldanondo N, Cotano U, Etxebeste E, Irigoien X, Alvarez P, Martinez MA, Herrero DL (2008) Validation of daily increments deposition in the otoliths of European anchovy larvae (Engraulis encrasicolus L.) reared under different temperature conditions. Fish Res 93:257-264.
Baumann H, Hinrichsen HH, Voss R, Stepputtis D, Grygiel W, Clausen L, Temming A ( 2006) Linking growth to environmental histories in central Baltic young-of-the-year sprat, Sprattus sprattus: an approach based on otolith microstructure analysis and hydrodynamic modelling. Fish Oceanogr 15:465-476.
Beamish RJ, McFarlane GA (1987) Current trends in age determination methodology. In: R.C. Summerfelt and G.E. Hall (Editors), Age and Growth of Fish. Iowa State University Press, Ames, pp. 15-42.
Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197-242.
Campana SE and Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 44:1014-1032.
Cermeno P, Uriarte A, Murguia DE, Morales B (2003) Validation of daily increment formation in otoliths of juvenile and adult European anchovy. J Fish Biol 62:679-691.
Crecco V, Savoy T, Gunn L (1983) Daily Mortality Rates of Larval and Juvenile American shad (Alosa sapidissima) in the Connecticut River with Changes in year-class Strength. Can J Fish Aquat Sci 40(10): 1719–1728.
Chen TS (1990) Daily growth rate of “Bull - ard”(Stolephorus zollingeri and Engraulis japonica) estimated from daily ring of otolith. Bull Taiwan Fish Res Inst 48:25-43.
Davenport J (1993) How and why do flying fish fly? Rev Fish Biol Fisheries 4:184-214.
Folkvord A, Blom G, Johannessen A, Moksness E (2000) Growth-dependent age estimation in herring (Clupea harengus L.) larvae. Fish. Res. 46, 91–103.
Folkvord A, Johannessen A, Moksness E (2004) Temperature-dependent otolith growth inNorwegian spring-spawning herring (Clupea harengus L.) larvae. Sarsia 89, 297–310.
Healey MC (1982) Timing and Relative Intensity of Size-Selective Mortality of Juvenile Chum Salmon (Oncorhynchus keta) During Early Sea Life. Can J Fish Aquat Sci 39(7): 952–957.
Hideaki Y, Masayuki C, Kimio A, Taku S, Masato K, Atsushi N (2009) Otolith development and daily increment formation in laboratory-reared larval and juvenile black-spot tuskfish Choerodon schoenleinii. Fish Sci 75:1141-1146.
Ichimaru T (2005) The life cycle of three species of Flying Fish in the north waters of Kyusyu and the recruitment of young Flying Fish to the fishing ground. Reprinted from Bulletin of Nagasaki Prefectural Institute of fisheried No.33
Jone CM (1986) Determining age of larval fish with the otolith increment technique. Fish Bull 84(1): 91-103.
Lewis J, Brundritt K, Fish AG (1962) The biology of the flyingfish, Hirundichthys affinis. Bull mar Sci Gulf Caribb 12:73-94.
Margarida C, William L (1995) A study of sampling strategies for estimating growth parameters in fish populations. J Fish Res 22:59-75.
Neuman MJ, Witting DA, Able KW (2001) Relationships between otolith microstructure, otolith growth, somatic growth and ontogenetic transitions in two cohorts of windowpane. J Fish Biol 58:967–984.
Oxenford HA, Hunte W, Deane R, Campana SE (1994) Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean Mar Biol 118:585-592.
Quinn TP, Volk EC, Hendry AP (1999) Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (Oncorhynchus nerka). Can J Zool 77(5):766-775.
Radtke TL (1984) Fromation and structural composition of larval striped mullet otoliths. Trans Am Fish Soc 113:192-196.
Ricker WE (1958) Handbook of computation for biological statics of fish populations. Fish Res Bd Can Bull 119: 1-300.
Soliman V, Yamada H, Yamaoka K (2009) Validation of daily sagittal increments in the golden-spotted rabbitfish Siganus guttatus (Bloch) using known-age larvae and juveniles. J Appl Ichthyol 25:438–441.
SUMIO Y (2001) To examine age of coast flying fish by otolith. ( Tokyo Metropolitan Fisheries Exp. Stn. S ) Tokyoto Suisan Shikenjo Shuyo Seikashu. Heisei 12 Nendo: 3-4.
Tsuji S and Aoyama T (1984) Daily growth increment s in otolith of Japanese anchovy larvae Engraulis japonica. Bull Jpn Soc Sci Fish 50(7): 1105-1108.
Umezawa A, Tsukamoto K, Tabeta O, Yamakawa H (1989) Daily growth increments in the larval otolith of the Japanese eel,Anguilla japonica. Ichthyol Res 35(4):440-444.
Vigliola L (2005) Validation of daily increment formation in otoliths for three Diplodus species in the Mediterranean sea. J Fish Biol 51(2): 349-360.
Xie S, Watanabe Y, Saruwatari T, Masuda R, Yamashita, Y, Sassa C, Konishi Y (2005) Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J Fish Biol 66:1704–1719.
Xie S and Watanabe Y (2005) Hatch date‐dependent differences in early growth and development recorded in the otolith microstructure of Trachurus japonicas. J Fish Biol 66(6):1720-1734.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code