Responsive image
博碩士論文 etd-0727110-174022 詳細資訊
Title page for etd-0727110-174022
論文名稱
Title
最大利潤機組排程與風險分析之研究
Profit-Based Unit Commitment and Risk Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-16
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
風險分析、免疫演算法、機組排程
Unit Commitment, Risk Analysis, Immune Algorithm
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1940
The thesis/dissertation has been browsed 5720 times, has been downloaded 1940 times.
中文摘要
解制後的電力市場,對電力市場的各參與者而言創造了更多的競爭機會與更公平的交易機制。在競爭的電力市場中,所有的電力供應業者將在預定的負載需求,透過競價的運作模式謀求最大的利潤。整個市場將由成本為基礎的操作模式轉而為競價投標的運作模式。此時「電力」將成為一種商品,價格將隨買賣雙方、負載變動及電力網路情況而不同,交易型態及交易項目將會更趨於多樣化,也連帶讓各個參與者彼此之間存在更多的商業競爭。發電業者執行機組排程的目的是為了獲取本身最大利潤,是一種價格為導向的機組排程,傳統上滿足負載需求再也不是發電業者的主要目的。另一方面電業市場中,獨立操作員負責供需撮合及系統安全的調度,獨立操作員安全控制的操作,將導引發電業者必需承受各項的風險,諸如電價變動風險、競標風險、壅塞風險、事故風險等等,因此在不確定性電力市場中,發電業者如何在風險控管之下,尋求市場最終交易的排程,已成為一項重要的研究課題。本文首先執行電價預測,電價預測提供重要的資料給發電業者和消費者來發展投標策略以求利潤最大化,而執行精確的風險管理策略,可獲得最大的利潤及提升永續經營的能力。其次,推導以價格為基礎機組排程的模式,並以強化式免疫演算法,求解發電業者最佳的機組排程及發電量。最後,以常態分佈法與共變異矩陣模擬電價波動的模式,並整合於機組排程的數學模式中,模擬分析電價波動機組排程的調度模式,求得不同信賴區間的風險值。
Abstract
For the power market participators, there are competition and more trade opportunities in the power industry under the deregulation. In the electricity market, the bidding model is adopted instead of the cost model. GenCos try to maximize the profit under bidding model according to the power demand. Electricity becomes commodity and its price varies with power demand, bidding strategy and the grid. GenCos perform the unit commitment in a price volatile environment to reach the maximal profit. In a deregulation environment, Independent System Operator (ISO) is very often responsible for the electricity auction and secured power scheduling. The ISO operation may involve all kinds of risks. These risks include price volatility risk, bidding risk, congestion risk, and so on. For some markets, it is very important how GenCos determine the optimal unit commitment schedule considering risk management. A good risk analysis will help GenCo maximize profit and purse sustainable development. In this study, price forecasting is developed to provide information for power producers to develop bidding strategies to maximize profit. Profit-Based Unit Commitment (PBUC) model was also derived. An Enhanced Immune Algorithm (EIA) is developed to solve the PBUC problem. Finally, the Value-at-Risk (VAR) of GenCos is found with a present confident level. Simulation results provide a risk management rule to find an optimal risk control strategy to maximize profit and raise its compatibility against other players.
目次 Table of Contents
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 研究背景 2
1-2-1 電力市場參與者 2
1-2-2電力市場之電價預測 4
1-2-3 發電機機組排程 5
1-2-4 電力市場風險管理 5
1-3文獻回顧 6
1-4 論文貢獻 9
1-5 論文內容概要 10
第二章 直交實驗設計與田口方法 12
2-1 前言 12
2-2 直交實驗設計 13
2-2-1 直交表 13
2-2-2 因子分析 15
2-3 田口方法 19
2-3-1 田口直交表 20
2-3-2 訊號與雜訊比 21
2-4 結論 22
第三章 電價預測 23
3-1 前言 23
3-2 類神經網路 24
3-2-1 類神經網路發展簡介 25
3-2-2 類神經網路基本架構 26
3-3強化式徑向基函數神經網路 27
3-3-1 徑向基類神經網路RBFN 28
3-3-2 強化式徑向基類神經網路ERBFN 29
3-3-3 ERBFN執行流程 32
3-4 本章結論 36
第四章 最大利潤機組排程 37
4-1 前言 37
4-2 最大利潤機組排程數學模型 38
4-2-1 最大利潤機組排程目標函數 39
4-2-2 機組排程限制式 40
4-3 強化式免疫演算法 42
4-3-1 免疫系統簡介 43
4-3-2 強化式免疫演法流程 47
4-4 本章結論 54
第五章 機組排程風險管理 55
5-1 前言 55
5-2 常態分佈風險模型 56
5-3 共變異風險模型 58
5-4 風險分析流程 62
5-5 本章結論 63
第六章 模擬測試 64
6-1 電價測試範例 64
6-1-1 模擬結果 67
6-1-2 能測試 72
6-2 機組排程測試範例 75
6-2-1 因子分析說明 75
6-2-2 機組排程(26機組系統) 77
6-2-3 機組排程(40、80、100機組系統) 81
6-2-4 最大利潤機組排程(15機組系統) 82
6-3 風險管理測試範例 86
6-3-1 風險分析(常態分佈模型) 86
6-3-2 風險分析(共變異矩陣模型) 87
6-4 本章結論 91
第七章 結論與未來研究方向 92
7-1 結論 92
7-1-1 電價預測 92
7-1-2 最大利潤機組排程 93
7-1-3 風險管理 93
7-2 未來研究方向 94

參考文獻 95
著作目錄 101
圖 目 錄

圖1.1 自由化電力市場架構圖 2
圖1.2 風險管理示意圖 6
圖2.1 直交表符號圖 13
圖2.2 L4(23)直交表示意圖 14
圖3.1 類神經網路基本架圖 26
圖3.2 RBFN架構示意圖 27
圖3.3 高斯函數轉換函數圖 28
圖3.4 ERBFN架構示意圖 29
圖3.5 ERBFN預測架構圖 34
圖3.6 ERBFN流程圖 35
圖4.1 免疫系統示意圖 43
圖4.2 免疫系統功能圖 44
圖4.3 染色體與抗體關係圖 48
圖4.4 對偶基因示意圖 50
圖4.5 EIA流程圖 54
圖5.1 PJM夏月星期二電力價格圖 57
圖5.2 風險值的定義 58
圖6.1 範例1之預測與實際電力價格曲線圖 69
圖6.2 範例2之預測與實際電力價格曲線圖 70
圖6.3 範例3之預測與實際電力價格曲線圖 70
圖6.4 範例4之預測與實際電力價格曲線圖 71
圖6.5 範例5之預測與實際電力價格曲線圖 71
圖6.6 範例6之預測與實際電力價格曲線圖 72
圖6.7 範例3之RMSE曲線圖 73
圖6.8 七機組染色體示意圖 75
圖6.9 26機組系統EIA收斂特性圖 79
圖6.10 10-100機組系統EIA收斂特性圖 82
圖6.11 負載與平均電價 84
圖6.12 EIA與IA收斂比較圖 84
圖6.13 在時段1時95%信賴區間風險值 87
圖6.14 售電利潤與利潤變異數關係圖 90

表 目 錄

表1.1 台電近五年經營績效 1
表2.1 叁因子之完全因子實驗 15
表2.2 兩因子x1、x2實驗 16
表2.3 兩因子A、B 實驗 17
表2.4 兩因子之因子分析 17
表2.5 叁因子兩水準直交表 20
表2.6 直交表L4(23)範例 20
表2.7 訊號與雜訊比說明 22
表3.1 類神經網路發展歷史 25
表3.2 L4(23)直交表水準定義 33
表3.3 L4(23)直交表因子分析 33
表4.1 染色體在田口式直交表中的應用 52
表6.1 訓練資料與測試資料 65
表6.2 訓練與測試資料數目 67
表6.3 ERPFN學習率參數之初始值與收斂值 68
表6.4 測試結果 68
表6.5 範例6之ERBFN、PNN與BPN比較 72
表6.6 各方法之效能比較於範例5 74
表6.7 直交表L4(23)範例 76
表6.8 26機組系統測試結果 77
表6.9 26機組系統機組排程表 78
表6.10 各方法之穩健特性比較 80
表6.11 最佳解之比較 80
表6.12 40、80與100部機組測試結果 81
表6.13 不同方法之最佳值比較 82
表6.14 15機組模擬機組資料 83
表6.15 EIA及IA收斂性測試(一) 85
表6.16 EIA及IA收斂性測試(二) 85
表6.17 不同容忍風險的風險值 86
表6.18 10部發電機組系統之機組數據 88
表6.19 電價預測表 88
表6.20 電價共變異矩陣 89
表6.21 不同風險設定之發電量排程 (Unit 5) 91
參考文獻 References
參 考 文 獻

[1] 台彎電力司網站:http://www.taipower.com.tw.
[2] 馬大康,在電力自由化環境下電力買賣及電力系統調度之重要課題研究,國科會計畫成果報告,NSC86-2213-E-110-039-T,1997。
[3] 蔡耀德,以混合型線性整數規劃為基礎之火力機組發電排程預定,國立中正大學電機研究所碩士論文,九十一年六月。
[4] 張文恭和莊景勝,“線性整數規劃與拉氏鬆弛法求解火力機組發電排程預定之分析比較,”第二十六屆電力研討會, 2005,pp.1558-1562, 12/9-10。
[5] 賴慶育,混合型線性整數規劃應用於火力機組發電排程預定之研究,國立中正大學電機研究所碩士論文,九十二年六月。
[6] P. Attaviriyanupap, H.K. Eiichi, and Hasegawa, “A hybrid LP-EP for solving new Profit-Based UC problem under competitive environment,” IEEE Trans. on Power Systems, Feb. 2003, Vol.18, No.1, pp.229-237.
[7] Tao Li and M. Shahidehpour, “Priced-Based unit commitment: A case of Lagrangian Relaxation versus mixed integer programming,” IEEE Trans. on Power Systems, Nov. 2005, Vol.20, No.4, pp.2015-2025.
[8] M. Madrigal and V.H. Quintana, “Existence and determination of competitive equilibrium in unit commitment power pool auctions: price setting and scheduling alternatives,” IEEE Trans. on Power Systems, Aug. 2001, Vol.16, No.3, pp.380-388.
[9] C.W. Richter and G.B. Sheble, “A Profit-Based unit commitment GA for the competitive environment,” IEEE Trans. on Power Systems, May 2000, Vol. 15, No.2, pp.715-721.
[10] G. Li, C.C. Liu, C. Mattson and J. Lawarree, “Day-Ahead electricity price forecasting in a grid environment,” IEEE Trans. on Power Systems, Feb 2007, Vol. 22, No. 1, pp.266-274.
[11] A. J. Conejo, J. Contreras, R. Espínola, and M. A Plazas, “Forecasting electricity prices for a day-ahead pool-based electric energy market,” Int. J. Forecast, 2005, Vol. 3, No. 21, pp.435-462.
[12] J.S. Chun, H.K. Jung, S.Y. Hahn, “A study on comparison of optimization performances between immune algorithm and other heuristic algorithms,” IEEE Trans. on Magnetic, 1998, Vol. 34, No. 5, pp.2972-2975.
[13] S.J. Huang, “An immune-based optimization method to capacitor placement in a radial distribution system,” IEEE Trans. on Power Delivery, 2000, Vol. 15, No. 2, pp.744-7499.
[14] Phillip J. Ross, Taguchi Techniques for Quality Engineering, Section Edition, The McGraw-Hill Companies, Inc., 1988, pp.203-243.
[15] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2000。
[16] D. Liu and Y. Cai, “Taguchi method for solving the economic dispatch problem with nonsmooth cost functions,” IEEE Trans. on Power Systems, Nov. 2005, Vol.20, No.4, pp.2006-2014.
[17] A. Roark, P. Skantze, and R. Masiello, “Exploring Risk-Based approaches for ISO/RTO asset managers,” Proceedings of IEEE, Nov. 2005, Vol. 93, No. 1, pp. 2036-2048.
[18] R. Dahkgren, C.C. Liu, and J. Lawarree, “Risk assessment in energy trading,” IEEE Trans. on Power Systems, May 2003, Vol. 18, No. 2, pp.503-511.
[19] M. Denton, A. Palmer, R. Masiello, and P.Skantze, “Managing market risk in energy,” IEEE Trans. on Power Systems, May 2003, Vol. 18, No. 2, pp. 494-502.
[20] L.F. Escudero, J.L. de la Fuente, C. García, and F.J. Prieto, “Hydropower generation management under uncertainty via scenario analysis and parallel computation,” IEEE Trans. Power Systems, May 1996, Vol. 11, pp.683–689.
[21] M.P. Nowak and W. Römisch, “Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty,” Oper. Res., 2000, Vol. 100, pp.251-272.
[22] S. Takriti, B. Krasenbrink, and L. S.-Y. Wu, “Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem,” Oper. Res., 2000, Vol. 48, pp.268-280.
[23] S.E. Fleten, S.W. Wallace, and W.T. Ziemba, “Hedging electricity portfolios via stochastic programming,” in Decision-Making under uncertainty: Energy and Power, A. Ryszczynski and C. Greengard, Eds. New York: Springer-Verlag, 2002.
[24] N. Growe-Kuska, K.C. Kiwiel, M.P. Nowak, W. Römisch, and I. Wegner, “Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation,” in Decision-Making Under Uncertainty: Energy and Power, A. Ryszczynski and C. Greengard, Eds. New York: Springer-Verlag, 2002.
[25] A.J. Conejo and F.J. Prieto, “Mathematical programming and electricity markets,” TOP (Sociedad de Estadística e Investigación Operativa), 2001, Vol. 9, pp.1-54.
[26] M. Denton, A. Palmer, R. Masiello, and P. Skantze, “Managing market risk in energy,” IEEE Trans. Power Systems, May 2003, Vol. 18, pp.494-502.
[27] R. Dahlgren, C.C. Liu, and J. Lawarreé, “Risk assessment in energy trading,” IEEE Trans. Power Systems, May 2003, Vol. 18, pp.503-511.
[28] M. Ni, J.D. McCalley, V. Vittal, and T. Tayyib, “Online risk-based security assessment,” IEEE Trans. Power Systems, Feb. 2003, Vol. 18, pp. 258-265.
[29] R.W. Dahlgren, C.C. Liu, and J. Lawarreé, “Volatility in the California power market: Source, methodology and recommendations,” IEE Proc. Gener. Transm. and Distrib. , Mar. 2001, Vol. 148, pp.189-193.
[30] A.P. Douglas, A.M. Breipohl, F.M. Lee, and R. Adapa, “Risk due to load forecast uncertainty in short term power system planning,” IEEE Trans. On Power Systems, Nov. 1998, Vol. 13, pp.1493-1499.
[31] J.C. Cuaresma, J. Hlouskova, S. Kossmeier, and M. Obersteimer, “Forecasting electricity spot-prices using linear univariate time-series models,” Appl. Ener., 2004, Vol. 77, pp.87-106.
[32] A.T. Lora, J.M.R. Santos, A.G. Expósito, J.L.M. Ramos, and J.C.R. Santos, Electricity market price forecasting based on weighted nearest neighbors techniques, IEEE Trans. on Power Systems, Aug. 2007, Vol. 22, No. 3, pp. 1294-1301.
[33] J. Contreras, F.J. Nogales, and A.J. Conejo, “ARIMA models to predict next-day electricity prices,” IEEE Trans. on Power Systems, Aug. 2003, Vol. 18, No. 3, pp. 1014-1020.
[34] M. Zhou, Z. Yan, Y.X. Ni, G. Li, and Y. Nile, “Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach,” IEE Proc. Gener. Transm. and Distrib., Mar. 2006, Vol. 153, No. 2, pp.187-195.
[35] A.J. Conejo, M.A. Plazas, R. Espínola, and A.B. Molina, “Day-Ahead electricity price forecasting using the wavelet transform and ARIMA models,” IEEE Trans. on Power Systems, May 2005, Vol. 20 , No. 2, pp.1035-1042.
[36] A.K. Diongue, D. Guegan, and B. Vignal, “Forecasting electricity spot market prices with a k-factor process,” Appl. Ener., 2009, Vol. 86, pp.505-510.
[37] P. Kosater and K. Mosler, “Can Markov regime-switching models improve power-price forecasts? evidence from German daily power prices,” Appl. Ener., 2006, Vol. 83, pp.943-958.
[38] A.M. González, A.M.S. Roque, and J. García-González, “Modeling and forecasting electricity prices with input/output hidden Markov models,” IEEE Trans. on Power Systems, Feb. 2005, Vol. 20, No. 1, pp.13-24.
[39] P. Mandal, T. Senjyu, N. Urasaki, T. Funabshi, and A.K. Srivastava, “A novel approach to forecast electricity price for PJM using neural network and similar days method,” IEEE Trans. on Power Systems, November 2007, Vol. 22, No. 4, pp.2058-2065.
[40] J.P.S. Catalão, S.J.P.S. Mariano, V.M.F. Mendes, and L.A.F.M. Ferreira, “An artificial neural network approach for short-term electricity prices forecasting,” The 14th international conference on intelligent system applications to power systems, ISPA, Kaohsiung, Taiwan, Nov. 2007, pp.430-435.
[41] L. Zhang, P.B. Luh, and K. Kasiviswanathan, “Energy clearing price prediction and confidence interval estimation with cascaded neural networks,” IEEE Trans. on Power Systems, Feb. 2003, Vol. 18, No. 1, pp.99-105.
[42] J.P.S. Catalão, S.J.P.S. Mariano, V.M.F. Mendes, and L.A.F.M. Ferreira, “Short-term electricity prices forecasting in a competitive market: a neural network approach,” Electr. Power Syst. Res., 2007, Vol. 77, pp.1297-1304.
[43] H.T. Pao, “Forecasting electricity market pricing using artificial neural networks,” Energ. Convers. Manage., 2007, Vol. 48, pp.907-912.
[44] R. Pino, J. Parreno, A. Gomez, and P. Priore, “Forecasting next-day price of Electricity in the Spanish Energy market Using Artificial Neural Networks,” Engineering Applications of Artificial Intelligence, 2008, Vol.21, pp.53-62.
[45] C.H. Lin and M.C. Tsao, “Power quality detection with classification Enhancible Wavelet-Probabilistic network in a power system,” IEE Proc. Gener. Transm and Distrib., Nov. 2005, Vol. 152, No. 6, pp.969-976.
[46] F.M. Ham and I. Kostanic, Principal of Neurocomputing for Science and Engineering, McGraw-Hill Companies, Inc., 2001.
[47] X. Ma, D.I. Sun, and K.W. Cheung, “Evolution toward standardized market design,” IEEE Trans. on Power Systems, May 2003, Vol.18, No. 2, PP460-469.
[48] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric Power Systems, John Wiley & Sons, Inc., 2002.
[49] E. Erdogdu, “A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (part I),” Appl. Ener., 2010, Vol. 87, pp. 251-258.
[50] C.W. Richter and G.B. Shedble, “A Profit-Based unit commitment GA for the competitive environment,” IEEE Trans. on Power Systems, Nov. 2005, Vol. 20, No. 4, pp.2015-2025.
[51] J. Solanki, S. Khushalani, and A. Srivastava, “A genetic algorithm approach to Price-Based unit commitment,” Power Symposium, 2006. NAPS 2006. 38th North American, Publication Year: 2006, Page(s): 425 – 429.
[52] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, “A hybrid LR-EP for solving new Profit-Based UC problem under competitive environment,” IEEE Trans. on Power Systems, Feb. 2003, Vol. 18, No. 1, pp.229-236.
[53] H.Y. Yamin, Q. El-Dwairi, and S.M. Shahidehpour, “A new approach for GenCos profit based unit commitment in Day-Ahead competitive electricity markets considering reserve uncertainty,” The International of Journal Electrical Power and Energy Systems, 2007, 29, pp.609-616.
[54] M.D. Phadke, Quality Engineering Using Robust Design, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[55] S.H. Park, Robust Design and Analysis for Quality Engineering, Chapman & Hall, 1996.
[56] C.L. Lin, “Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics,” Materials and Manufacturing Processes, 2004, Vol. 19, No. 2, pp.209-220.
[57] H.C. Liao, “Using N_D method to solve muti-response problem in Taguchi,” Journal of Intelligent Manufacturing, 2005, Vol. 16, No. 3, pp.331-347.
[58] A.K.D. Jayadeva, and S. Chandra, “Algorithm for building a neural network for function approximation,” IEE Proceedings-Circuits, Devices and System, October/December 2002, vol. 149, no. 56, pp.301-307.
[59] C. C. Chan, E. W. C. Lo, and W. X. Shen, “Available capacity computation model based on artificial neural network for Lead-Acid batteries in electric vehicles,” Journal of Power Sources, 1999, Vol. 87, No. 1-2, pp.201-204.
[60] M. Sandford, D. Parish, and I. Phillips, “Neural approach to detecting communication network events,” IEE Proceedings-Communications, October/December 2002, Vol. 149, no. 56, pp.257-264.
[61] B.R. Szkuta, L.A. Sanabria, and T.S. Dillon, “Electricity price short-term forecasting using ANN,” IEEE Trans. on Power Systems, Aug. 1999, Vol. 14, No. 3, pp.851-857.
[62] F. Gao, X. R. Cao, and A. Papalexopoulos, “Forecasting power market clearing price and quantity using a neural network,” IEEE PES Summer Meeting, Vol. 4, pp. 2183-2188, Seatle, WA, 2000.
[63] 葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,民國九十七年。
[64] PJM Energy Management:http://www.PJM.com/index.jsp.
[65] M.R. Alrashidi and K.M. EL-Naggar, “Long term electric load forecasting based on particle swarm optimization,” Appl. Ener., 2010, Vol. 87, pp.320-326.
[66] A.J. Wood and B.F., Power generation, operation & control, John Wiley & Sons, Inc. NY, 1984.
[67] L. Sun, Y. Zhang, and C. Jiang, “A matrix Real-Coded genetic algorithm to the unit commitment problem,” Electric Power Systems Research, 2006, Vol. 7, pp.716-728.
[68] T. Senjyu, K. Shimabukro, K. Uezato, and T. Funabashi, “A fast technique for unit commitment problem by extended priority list,” IEEE Trans. on Power Systems, May 2003, Vol. 18, No. 2, pp.882-888.
[69] D.N. Simopoulos, S.D. Kavatza, and C.D. Vournas, “Unit commitment by an enhanced simulated annealing algorithm,” IEEE Trans. on Power Systems, Feb. 2006, Vol. 21, No. 1, pp.68-76.
[70] S.A. Kazarlis, A.G. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem,” IEEE Trans. on Power Systems, Feb. 1996, Vol. 1, No. 1, pp.83-92.
[71] C.C.A. Rajan and M.R. Mohan, “An evolutionary programming-based tabu search method for solving the unit commitment problem,” IEEE Trans. on Power Systems, Feb. 2004, Vol. 19, No. 1, pp.577-585.
[72] T.A.A. Victoire and A.E. Jeyakimar, “Unit commitment by a tabu search based hybrid-optimizations technique,” IEE Proc. Gener. Transm. and Distrib., Jul. 2005, Vol. 152, No. 4, pp. 563-574.
[73] G.C. Liao, “Application of an immune algorithm to the short term unit commitment problem in power system operation,” IEE Proc. Gener. Transm. and Distrib., May 2006, Vol. 153, No. 3, pp.309-320.
[74] A.Y. Saber, T.S. Senjyu, T.M.N. Urasaki, and T. Funabashi, “Fuzz unit commitment scheduling using absolutely stochastic simulated annealing,” IEEE Trans. on Power Systems, 2006, Vol. 21, No. 2, pp.955-964.
[75] T.O. Ting, M.V.C. Rao, and C.L. Loo, “A novel approach for unit commitment problem via an effective hybrid particle swarm optimization,” IEEE Trans. on Power Systems, 2006, Vol. 21, No. 1, pp.411-418.
[76] T. Senjyu, A.Y., Saber, T. Miyagi, N. Urasaki, and T. Funabashi, “Absolutely stochastic simulated annealing approach to large scale unit commitment problem,” Electr. Power Compon. Syst., 2006, 34(6), pp.619-637.
[77] S.H. Hossesini, A. Khodaei and F. Aminifar, “A novel straightforward unit commitment method for large-scale power systems,” IEEE Trans. on Power Systems, 2007, Vol. 22, No. 4, pp.2134-2143.
[78] T. Senjyu, A.Y. Saber, N. Uraski, and T. Funabashi “Fast technique for unit commitment by absolute stochastic simulated annealing,” Power Engineering Society General Meeting, 2005, IEEE, Vol. 2, pp.1293-1296.
[79] S.N. Yu and N. Chen, “A double-filtration algorithm for optimal scheduling of thermal units,” IEEE Trans. on Power Systems, 2006, Vol. 19, No. 2, pp.1190-1195.
[80] M. Eslamian, S.H. Hoeeeinian and B. Vahidi, “Bacterial foraging-based solution to the unit-commitment problem,” IEEE Trans. on Power Systems, 2009, Vol. 24, No. 3, pp.1478-1488.
[81] T.W. Lau, C.Y. Chung, K.P. Wong, T.S. Chung and S.L. Ho, “Quantum-inspired Evolutionary Algorithm approach for unit commitment,” IEEE Trans. on Power Systems, 2009, Vol. 24, No. 3, pp.1503-1512.
[82] C. Rajan, M. Mohan, K. Manivannan, “Neural-based tabu search method for solving unit commitment problem,” IEE Proc. Gener. Transm. and Distrib., Jul. 2003, pp.469-474.
[83] H. R. Mashhadi, H. M. Shanechi and C. Lucas, “A new genetic algorithm with Lamarckian Individual Learning for generation scheduling,” IEEE Trans. on Power Systems, 2003, Vol. 18, No. 3, pp.1181-1186.
[84] V. N. Dieu and W. Ongsakul, “Ramp rate constrained unit commitment by improved priority list and augmented Lagrange Hopfield network,” Electric Power Systems Research, 2008, 78(3), pp.291-301.
[85] V.N. Dieu and W. Ongsakul, “Improved merit order and augmented Lagrange Hopfield network for unit commitment,” IET Generation, Transmission & Distribution, Jul. 2007, 1(4), pp.548-556.
[86] D. Das and B.F. Wollenberg, “Risk assessment of generators bidding in a Day-Ahead market,” IEEE Trans. on Power Systems, Feb. 2005, Vol. 20, No. 1, pp.416-424.
[87] M. Rahimiyan and H.R. Mashhadi, “Risk analysis of bidding strategies in an electric pay as bid auction: A new theorem,” Energy Conversion & management, Jan. 2007, Vol. 48, pp.131-137.
[88] R.A. Jabr, “Robust self-scheduling under price uncertainty using conditional Value-at-Risk,” IEEE Trans. on Power Systems, Nov. 2005, Vol. 20, No. 4, pp. 1852-1858.
[89] P. Attaviriyanupap and A. Yokoyama, “Price volatility and service interruption Risk-Hedging by transmission contract,” IEEE Trans. on Power Systems, Feb. 2006, Vol. 21, No. 1, pp.211-223.
[90] X. Ma, F. Wen, Y. Ni, and J. Liu, “Towards the development of risk constraints optimal bidding strategies for generation companies in electricity markets,” electric power systems research, 2005, Vol. 73, pp.305-312.
[91] E. Caruso, M. Dicorato, A. Minoia, and M. Trovato, “Supplier risk analysis in the Day-Ahead electricity market,” IEE Proc. Gener. Transm. and Distrib., May 2006, Vol. 153, No. 3, pp.335-342.
[92] T. Li and M. Shahidehpour, “Risk-constrained FTR bidding strategy in transmission markets,” IEEE Trans. on Power Systems, May 2005, Vol. 20, No. 2, pp.1014-1021.
[93] G.P. Granelli, P.Marannino, M. Montagna, and F. Zanellini, “Monte carlo based unit commitment procedure for the deregulated market environment,” International Journal of Electric Power & Energy Systems, 2006., Vol. 28, pp. 712-722
[94] 呂榮基和蔡文瑞,“考慮不確定性資料之價格為導向的機組調度,” 第二十七屆電力研討會,PB2.15, 12/22-23, 2006.
[95] A.J. Conejo, F.J. Nogales, and J.M. Arroyo, “Risk-Constraint Self-Ccheduling of a thermal power producer,” IEEE Trans. on Power Systems, Aug. 2004, Vol. 19, No. 3, pp.1569-1574.
[96] H.Y. Yamin and S.M. Shahidehpour, “Risk and profit in Self-Scheduling for GenCos,” IEEE Trans. on Power Systems, Nov. 2004, Vol. 19, No. 4, pp.2104-2106.
[97] E. Ni, P.B. Luh, and S. Rourke, “Optimal integrated generation bidding and scheduling with risk management under a deregulated power market,” IEEE Trans. on Power Systems, Feb. 2004, Vol. 19, No. 1, pp.600-609.
[98] R. Wang, J.C. Shang, X.Y. Zhou, and Y.C. Zhang, “Risk assessment and management of portfolio optimization for power plants,” IEEE Transmission and Distribution Conference: Asia and Pacific, 8/14-17, 2005, Dailan China.
[99] Philippe Jorion, Value at Risk: The new Benchmark for Controlling Market Risk, The McGraw-Hill Companies, Inc, 1997.
[100] C. Marrison, Fundamentals of Risk Measurement, McGraw-Hill Companies, Inc, 2002.
[101] C. Alexander, Risk Management and Analysis, Volume 1 Measuring and Modeling Financial Risk, John Wiley & Sons Ltd., 2000.
[102] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed. New York: Springer-Verlag, 1991.
[103] F. J. Nogales, J. Contreras, A. J. Conejo and R. Espínola, “Forecasting Next-Day electricity prices by time series models,” IEEE Trans. on Power Systems, May 2002, Vol. 17, pp.342-348.
[104] J. P. Morgan, Risk Metrics-Technical Document, 4th ed. New York: Morgan Guaranty Trust Company, 1996.
[105] H. M. Markowitz and J. Finance, “Portfolio selection,” 1952, Vol. 8, pp. 77–91.
[106] D. G. Luenberger, Investment Science. New York: Oxford Univ. Press, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code