Responsive image
博碩士論文 etd-0727110-180139 詳細資訊
Title page for etd-0727110-180139
論文名稱
Title
鉬與鋯之奈米晶薄膜之晶粒成長與機械性質
Grain Growth and Mechanical Properties of Nanocrystalline Mo and Zr Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-22
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
奈米晶、鋯、鉬
Nanocrystalline, Zirconium, Molybdenum
統計
Statistics
本論文已被瀏覽 5666 次,被下載 417
The thesis/dissertation has been browsed 5666 times, has been downloaded 417 times.
中文摘要
在本論文中,探討了鉬與鋯之奈米晶薄膜之機械性質。實驗中使用的鉬與鋯之奈米晶薄膜係使用直流磁控濺鍍製備,並經過快速退火系統退火,接著使用X光繞射儀與穿透式電子顯微鏡觀察,最後使用奈米壓痕系統量測其機械性質。經過退火後的鋯薄膜,其平均晶粒大小較高溫濺鍍的薄膜來得高,但因熱震影響,使其產生脫膜現象。而由X光繞射圖求得之平均晶粒大小與穿透式電子顯微影象相近,其差距可視為誤差。鉬之奈米晶薄膜經由拉伸與奈米壓痕測試,其薄膜在拉伸過程中發生脫膜現象,吾人將其歸因於薄膜的蜂巢狀結構所致。在鋯之奈米晶薄膜方面,其X光繞射圖與穿透式電子顯微鏡觀察皆指出,在鍍膜溫度小於300 °C時,晶粒並無明顯成長,要使其晶粒明顯成長,鍍膜溫至少要大於300 °C。經過奈米壓痕測試後,在鍍膜溫度400 °C的試片,其硬度與彈性係數皆高於其它試片。經與大晶粒之鋯金屬做比較,吾人認為其Hall-Petch關係式中的斜率k相當小,且是在鋯之奈米晶薄膜之範圍。
Abstract
In this study, the mechanical properties of nanocrystalline Mo and Zr thin films are examined. The specimens of nanocrystalline Mo and Zr thin films were all fabricated by DC magnetron sputtering at various temperatures. These specimens were annealed in RTA system and then investigated by X-ray diffractormeter as well as TEM. After that, nanocrystalline Mo and Zr thin films were tested by nanoindentation. The average grain sizes in Zr thin films annealed are larger than deposited at high temperature, but the films after annealing are stripped away from the substrates due to the thermal shock. The average grain sizes estimated by XRD patterns are in common with those estimated by TEM images. We suggest that the difference is deviation. Nanocrystalline Mo thin films were first tested by both nanoindentation and tensile tests. Mo thin films were stripped away during tensile tests. We consider that the phenomenon is due to the honeycombed structure of the films. The X-ray diffraction patterns and TEM observations indicated that there is no evident grain growth in the nanocrystalline Zr thin films, deposited at 100 °C, 200 °C, and 300 °C, except at 400 °C. The deposition temperature for apparent grain growth in the Zr thin films is at least above 300 °C. After nanoindentation tests, the hardness (H) and Young’s modulus (E) of specimens deposited at 400 °C are higher than that of other specimens. Compared to coarse-grained Zr metals, we suggest that the slope k in the Hall-Petch relationship is quite small and in the range of nanocrystalline Zr thin films.
目次 Table of Contents
Content.......................................................................................................................................I
List of Tables............................................................................................................................V
List of Figures.........................................................................................................................VI
中文摘要...............................................................................................................................XII
Abstract................................................................................................................................XIII
Chapter 1 Introduction.............................................................................................................1
1.1 Nanocrystalline metals............................................................................................1
1.2 Molybdenum...........................................................................................................3
1.3 Zirconium................................................................................................................4
1.4 Motivation...............................................................................................................5
Chapter 2 Background and literature review...........................................................................8
2.1 Fabrication methods................................................................................................8
2.2 Sputtering................................................................................................................9
2.2.1 DC sputtering.............................................................................................11
2.2.2 RF sputtering.............................................................................................11
2.2.3 Reactive sputtering....................................................................................12
2.2.4 Magnetron sputtering.................................................................................12
2.2.5 Nucleation and growth of sputter-deposited films....................................14
2.2.6 Thornton zone............................................................................................16
2.3 Mechanical properties...........................................................................................18
2.3.1 Strength......................................................................................................18
2.3.2 Strain rate effect.........................................................................................19
2.3.3 Localized deformation...............................................................................19
2.4 Deformation mechanisms......................................................................................20
2.4.1 Hall-Petch relationship..............................................................................20
2.4.2 Grain boundary activity.............................................................................21
2.4.3 Twinning and partial dislocation...............................................................22
2.5 Nanoindentation....................................................................................................23
2.6 The factors influencing thin film mechanical properties.......................................27
2.6.1 Indentation size effect................................................................................27
2.6.2 Surface roughness......................................................................................27
2.6.3 Substrate effect..........................................................................................28
2.6.4 Pile-up and sink-in effect...........................................................................28
Chapter 3 Experimental procedures.......................................................................................29
3.1 Introduction...........................................................................................................29
3.2 Materials................................................................................................................29
3.3 Sample preparations..............................................................................................30
3.3.1 Substrate preparations................................................................................30
3.3.2 Thin films preparations..............................................................................31
3.3.3 Grain growth..............................................................................................32
3.4 Properties measurements and analyses..................................................................33
3.4.1 3D alpha-step profilometer........................................................................33
3.4.2 X-ray diffraction analysis..........................................................................33
3.4.3 Scanning electron microscopy...................................................................34
3.4.4 Transmission electron microscopy............................................................34
3.4.5 Nanoindentaion tests..................................................................................35
3.4.6 Tensile tests................................................................................................35
Chapter 4 Results and Discussion..........................................................................................37
4.1 3D alpha-step profilometer examinations.............................................................37
4.2 The thin films after annealing...............................................................................37
4.3 X-ray diffraction patterns......................................................................................37
4.4 SEM observation...................................................................................................39
4.5 TEM observation...................................................................................................40
4.6 Tensile tests on nanocrystalline Mo thin films on Kapton foils............................41
4.7 Results of nanoindentation tests............................................................................42
4.8 TEM observation after indentation tests...............................................................44
Chapter 5 Conclusions...........................................................................................................45
References...............................................................................................................................47
Tables......................................................................................................................................53
Figures.....................................................................................................................................60
參考文獻 References
1. R. Birringer, H. Gleiter, H. P. Klein and P. Marquardt, Physics Letters A 102, 365-
369 (1984).
2. K. S. Kumar, H. Van Swygenhoven and S. Suresh, Acta Materialia 51, 5743-5774
(2003).
3. M. Chen, E. Ma and K. Hemker, Mechanical Behavior of Nanocrystalline Metals, in
Nanomaterials Handbook, CRC/Taylor & Francis. p. 497-531 (2006).
4. E. O. Hall, Proceedings of the Physical Society. Section B 747-753 (1951).
5. N. J. Petch, J. Iron and Steel Institute 174, 25-28 (1953).
6. A. A. W. Thompson, Acta Metallurgica 23, 1337-1342 (1975).
7. C. A. Schuh, T. G. Nieh and T. Yamasaki, Scripta Materialia 46, 735-740 (2002).
8. D. H. Jeong, U. Erb, K. T. Aust and G. Palumbo, Scripta Materialia 48, 1067-1072
(2003).
9. C. A. Schuh, T. G. Nieh and H. Iwasaki, Acta Materialia 51, 431-443 (2003).
10. J. Carsley, A. Fisher, W. Milligan and E. Aifantis, Metallurgical and Materials
Transactions A 29, 2261-2271 (1998).
11. D. Jia, K. T. Ramesh and E. Ma, Acta Materialia 51, 3495-3509 (2003).
12. Q. Wei, D. Jia, K. T. Ramesh and E. Ma, Applied Physics Letters 81, 1240-1242
(2002).
13. Q. Wei, T. Jiao, K. T. Ramesh and E. Ma, Scripta Materialia 50, 359-364 (2004).
14. Q. Wei, K. Ramesh, B. Schuster, L. Kecskes and R. Dowding, JOM Journal of the
Minerals, Metals and Materials Society 58, 40-44 (2006).
15. O. D. Sherby and J. Wadsworth, Progress in Materials Science 33, 169-221 (1989).
16. Q. Wei, S. Cheng, K. T. Ramesh and E. Ma, Materials Science and Engineering A 381, 71-79 (2004).
17. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop and S. Suresh, Acta Materialia 51,
5159-5172 (2003).
18. C. Briant, JOM Journal of the Minerals, Metals and Materials Society 52, 36-36
(2000).
19. J. Shields and P. Lipetzky, JOM Journal of the Minerals, Metals and Materials
Society 52, 37-39 (2000).
20. A. Baudry and et al., Journal of Physics: Condensed Matter 12, 3719 (2000).
21. L. Smardz, Journal of Alloys and Compounds 395, 17-22 (2005).
22. M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai, C. J. Lee and T. G. Nieh, Scripta
Materialia 61, 840-843 (2009).
23. E. J. Rapperport, Acta Metallurgica 7, 254-260 (1959).
24. I. J. Beyerlein and C. N. TomÈ, International Journal of Plasticity 24, 867-895 (2008).
25. A. H. Chokshi, A. Rosen, J. Karch and H. Gleiter, Scripta Metallurgica 23, 1679-1683
(1989).
26. U. Erb, Nanostructured Materials 6, 533-538 (1995).
27. F. Ebrahimi, Q. Zhai and D. Kong, Scripta Materialia 39, 315-321 (1998).
28. F. Ebrahimi, G. R. Bourne, M. S. Kelly and T. E. Matthews, Nanostructured Materials
11, 343-350 (1999).
29. F. Dalla Torre, H. Van Swygenhoven and M. Victoria, Acta Materialia 50, 3957-3970
(2002).
30. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton and P. Wang, Acta Materialia
51, 387-405 (2003).
31. F. Macionczyk and W. Bruckner, Journal of Applied Physics 86, 4922 (1999).
32. D. Y. W. Yu and F. Spaepen, Journal of Applied Physics 95, 2991-2997 (2004).
33. T. Li, Z. Y. Huang, Z. C. Xi, S. P. Lacour, S. Wagner and Z. Suo, Mechanics of
Materials 37, 261-273 (2005).
34. X. Yong, L. Teng, S. Zhigang and J. J. Vlassak, Applied Physics Letters 87, 161910
(2005).
35. T. Li and Z. Suo, International Journal of Solids and Structures 43, 2351-2363 (2006).
36. T. Li and Z. Suo, International Journal of Solids and Structures 44, 1696-1705 (2007).
37. S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P.
Trociewitz and K. Han, Acta Materialia 53, 1521-1533 (2005).
38. R. K. Guduru, K. L. Murty, K. M. Youssef, R. O. Scattergood and C. C. Koch,
Materials Science and Engineering: A 463, 14-21 (2007).
39. A. M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust, Scripta Metallurgica et
Materialia 27, 1185-1188 (1992).
40. U. Erb. Electrodiposited Nanocrystals - Synthesis, Structure, Properties and Future
Applications: Pergamon-Elsevier Science Ltd (1995).
41. P. G. Sanders, J. A. Eastman and J. R. Weertman, Acta Materialia 45, 4019-4025
(1997).
42. P. G. Sanders, G. E. Fougere, L. J. Thompson, J. A. Eastman and J. R. Weertman,
Nanostructured Materials 8, 243-252 (1997).
43. R. C. Hugo, H. Kung, J. R. Weertman, R. Mitra, J. A. Knapp and D. M. Follstaedt,
Acta Materialia 51, 1937-1943 (2003).
44. H. Gleiter, Progress in Materials Science 33, 223-315 (1989).
45. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley
& Sons (1980).
46. K. Seshan, Handbook of thin-film deposition processes and techniques: principles,
methods, equipment, and applications. Park Ridge, N.J., Noyes Publications (2002).
47. R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani and A. Foucaran, Materials
Science and Engineering B 97, 68-73 (2003).
48. D. M. Mattox, Handbook of physical vapor deposition (PVD) processing. Westwood,
N.J., Noyes Publications (1998).
49. J. A. Thornton, Physical Vapor Deposition, in Semiconductor Materials and Process
Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale
Integration (ULSI), Park Ridge, N.J., Noyes Publications. p. 329-454 (1988).
50. K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology. Park Ridge,
N.J., Noyes Publications (1992).
51. B. A. Movchan and A. V. Demchish, Physics of Metals and Metallography 28, 83-90
(1969).
52. J. A. Thornton, Journal of Vacuum Science and Technology 11, 666-670 (1974).
53. J. A. Thornton, Journal of Vacuum Science & Technology 12, 830-835 (1975).
54. R. F. Bunshah, Handbook of deposition technologies for films and coatings. Park
Ridge, N.J., Noyes Publications (1994).
55. Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker and E. Ma, Scripta Materialia 48,
1581-1586 (2003).
56. L. Lu, S. X. Li and K. Lu, Scripta Materialia 45, 1163-1169 (2001).
57. J. R. Weertman, Mechanical Behavior of Nanocrystalline Metals, in Nanostructured
Materials: Processing, Properties, and Potential Applications, Norwich, William
Andrew Publishing. p. 397–421 (2002).
58. R. A. Masumura, P. M. Hazzledine and C. S. Pande, Acta Materialia 46, 4527-4534
(1998).
59. Y. M. Wang and E. Ma, Acta Materialia 52, 1699-1709 (2004).
60. Y. Wang, M. Chen, F. Zhou and E. Ma, Nature 419, 912 (2002).
61. A. Vinogradov and S. Hashimoto. Fatigue of severely deformed metals: Wiley-V C H
Verlag Gmbh (2003).
62. M. Legros, K. J. Hemker, A. Gouldstone, S. Suresh, R. M. Keller-Flaig and E. Arzt,
Acta Materialia 50, 3435-3452 (2002).
63. Z. Budrovic, H. Van Swygenhoven, P. M. Derlet, S. Van Petegem and B. Schmitt,
Science 304, 273 (2004).
64. J. Schiotz, F. D. Di Tolla and K. W. Jacobsen, Nature 391, 561 (1998).
65. J. Schiotz and K. W. Jacobsen, Science 301, 1357 (2003).
66. H. Van Swygenhoven, Science 296, 66 (2002).
67. Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt and S. X. Mao,
Science 305, 654 (2004).
68. J. R. Rice, Journal of the Mechanics and Physics of Solids 40, 239-271 (1992).
69. P. Müllner, C. Solenthaler and M. O. Speidel, Acta Metallurgica et Materialia 42,
1727-1732 (1994).
70. P. Müllner, C. Solenthaler and M. O. Speidel, in Twinning in Advanced Materials,
Warrendale, PA, TMS. p. 483-490 (1994).
71. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang and X. Cheng, Science 300, 1275-
1277 (2003).
72. S. Timoshenko and J. N. Goodier, Theory of Elasticity. 2nd ed. New York, McGraw-
Hill (1951).
73. I. N. Sneddon, International Journal of Engineering Science 3, 47-57 (1965).
74. G. M. Pharr, W. C. Oliver and F. R. Brotzen, Journal of Materials Research 7, 613-
617 (1992).
75. W. C. Oliver and G. M. Pharr, Journal of Materials Research 19, 3-20 (2004).
76. I. Manika and J. Maniks, Acta Materialia 54, 2049-2056 (2006).
77. F. K. Mante, G. R. Baran and B. Lucas, Biomaterials 20, 1051-1055 (1999).
78. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, P. Houdy and J. L. Bozet,
Journal of Applied Physics 87, 7753-7757 (2000).
79. K. D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens,
Materials Characterization 49, 149-156 (2002).
80. M. Qasmi, P. Delobelle, F. Richard and A. Bosseboeuf, Surface and Coatings
Technology 200, 4185-4194 (2006).
81. A. Bolshakov and G. M. Pharr, Journal of Materials Research 13, 1049-1058 (1998).
82. K. W. McElhaney, J. J. Vlassak and W. D. Nix, Journal of Materials Research 13,
1300-1306 (1998).
83. K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida and S. Sasaki, Japanese Journal of
Applied Physics 43, 4602-4605 (2004).
84. D. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface
Engineering. Glasgow, Blackie & Son Limited (1991).
85. T. R. G. Kutty, K. Ravi and C. Ganguly, Journal of Nuclear Materials 265, 91-99
(1999).
86. H. S. Huang, Ph. D Thesis, The Effects of Processing Parameters and Additives on
Sintering Behavior of Molybdenum and its Brittleness, Department of Materials
Science and Engineering, National Taiwan University, (2002).
87. H. G. Yang, Master Thesis, Properties, Structures of Zr and ZrNx Thin Films and
their Application for Diffusion Barrier by DC Magnetron Sputtering, Department of
Materials Science and Engineering, National Cheng Kung University, (2002).
88. DuPont™. www.dupont.com.
89. W. D. Nix, Materials Science and Engineering A 234-236, 37-44 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code