Responsive image
博碩士論文 etd-0727110-234241 詳細資訊
Title page for etd-0727110-234241
論文名稱
Title
電沉積類碳鑽薄膜在矽基板上之特性分析
Electrodeposition of Diamond-like Carbon thin films on Silicon and their Characteristical
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-19
繳交日期
Date of Submission
2010-07-27
關鍵字
Keywords
類鑽碳薄膜、化學反應機制、矽基板、電沉積
electrodeposition, molecular structure of carbon sources, Silicon, DLC, Diamond-like Carbon
統計
Statistics
本論文已被瀏覽 5619 次,被下載 0
The thesis/dissertation has been browsed 5619 times, has been downloaded 0 times.
中文摘要
類鑽碳 (diamond-like carbon - DLC)薄膜具有高硬度、低摩擦係數、抗化學腐蝕、高熱傳導性、高電阻及穿透特性等特性可做為工業上應用。在本研究主題中,主要以矽基板上電沉積類鑽碳薄膜,與ITO基板在同時驗條件下做為比較,藉由改變不同的沉積參數包括電位、沉積溫度和溶液濃度,探討對類鑽碳薄膜的特性與品質的影響,並探討類鑽石薄膜積在兩種基板上差異。
從FTIR所量測到大多數的鍵結吸收波段位於610 cm-1、680 cm-1、1100 cm-1、3600 cm-1至3800 cm-1,分別為Si-H、Si-O、O-H;而2800 cm-1至3100 cm-1皆無明顯的特徵峰出現,故可推斷薄膜上的CHn的鍵結含量很少,其他少數鍵結為Si-C、 SP3 C-C、 C-O、C-C、C=O與C=C,可說明薄膜成份大多由Si-H、Si-O、O-H。
由各種量測結果可推論出可能的化學反應的機制。當水和醋酸混合時,生成物為乙酸根離子與水含氫離子H3O+。當電壓加上時,乙酸根離子會被正極吸附,形成C(電極)-OOCCH3之結構,此時乙酸根失去電子後,會被電解成為CH3+與CO2,其中CH3+會被負極所吸附。而水合氫離子亦被負極吸附,與矽反應形成Si-H結構與H2O,氫離子會再與Si-H結構反應形成H2。由發現負極基板會有大量的氫氣產生證明氫離子與矽基板先行反應,其反應速度遠大於碳與矽的反應。從實驗結果可推知,由於基板很容易與氫反應(Si-H),會在基板表面與Si-C沉積反應形成競爭,在Si-H快速反應下,CH3離子很難在Si基板上沉積。
Abstract
Diamond-like carbon (DLC) film exhibits an extreme hardness, low friction coefficient, chemical stability, heat conductivity, high resistance, and high optical transparency. There properties lead to remarkable on industrial applications Diamond-like carbon films were deposited onto the silicon (100) and ITO glass substrates. Under the same deposition conditions, the characteristics of DLC films were evaluated by the variations of deposited parameters such as the applied voltage, deposition temperature the concentrations of electrolyte; acetic acid. The properties due to the different substrate were compared and discussed in detail. In experimental work, the properties of DLC film were conducted by various measurements. Scanning electron microscopy can make an insight into the surface morphology also to reveal the uniformity of the DLC films. For the I-t curves of DLC film growth, it can be used to study of the growth mechanism by correlation the surface morphology observed by Scanning electron microscopy (SEM). The transmission, refraction index and optical band gap of DLC film was measured by the N &K analyzer. Finally, the hydrogen content, composition and microstructure of DLC films were characterized by the FTIR and XPS analyze
According to above results, DLC film using the electrolyte of acetic acid was more difficult to deposit on Silicon substrate because the very high activation energy and the high hydrogen ion existing in DI water firstly deposited on the surface of Si substrate. For FTIR measurement, The absorption wavenumber of various bonding observed were positioned at 610 cm-1,680 cm-1,1100 cm-1 and 3600 cm-1~3800 cm-1and to be cauterized as the bonding of Si-H、Si-O and O-H, respectively. The absorption peaks within the range from 2800 cm-1 to 3100 cm-1 were missing. Peaks observed were attributed to the bonding of Si-C、 SP3 C-C、 C-O、C-C、C=O and C=C and the CHn bonding was missing on the surface of substrate.
The reaction mechanism of DLC deposition can be suggested from the results of measurements. As bias voltage applied, the acetic ion; CH3COO- were attracted by the Anode as the state of C(Anode)-OOCCH3, and then to give electron and form the CH3+ion與CO2. The hydrogen ion and methyl ion were attracted by cathode. The competitive reaction was built between ions to deposited DLC films and/or to form Si-H. However, experimental results show that the last was preferred and for forming the DLC film was forbidden.
目次 Table of Contents
致謝 .......................................... 1
摘 要 ......................................... 2
Abstract ................................... 4
表目錄 ..................................... 9
圖目錄 ................................. 10
第一章 緒 論 ........................................... 14
1-1 前言 .................................................. 14
1-2 研究目的 .......................................... 14
1-3 論文架構 ............................................. 15
第二章 理 論 背 景 ................................ 16
2-1 碳的簡介 ......................................... 16
2-2 類鑽碳薄膜 ........................................ 17
2-3 類鑽碳的結構 ..................................... 22
2-4 類鑽碳的特性與應用 ...................... 23
2-5 類鑽碳的成長機制............................... 24
2-5-1 電沉積的起源 ................................ 24
2-5-2 薄膜沉積現象 ............................ 25
2-5-3 長晶 ............................................... 26
2-5-4 晶粒成長 ....................................... 27
2-5-5 晶粒聚結 ....................................... 27
2-5-6 縫道填補與薄膜的成長 ......................... 28
第三章 實驗方法與儀器設備 ............................. 29
3-1 實驗材料與儀器設備 ................................ 29
3-1-1 實驗材料 ................................... 29
3-1-2 儀器設備 ................................... 29
3-2 類鑽碳成膜實驗操作步驟 .......................... 30
3-2-1 基板的前置處理 .............................. 30
3-2-2 電沉積之操作步驟 ........................ 30
3-3 量測儀器與其原理........................................ 31
3-3-1 掃瞄式電子顯微鏡 ................................... 31
3-3-2 X光光電子能譜儀[48] ................................... 34
3-3-3 傅立葉轉換紅外光譜儀 [48] ............................ 37
3-3-4 n & k Analyzer ............................. 40
第四章 結果與討論 ............................... 44
4-1電流曲線特性分析 .......................... 44
4-2 活化能比較 ..................................... 45
4-3 SEM表面分析 ................................ 48
4-2-1 電壓之影響 ................................. 48
4-2-2 溫度之影響 ................................. 49
4-2-3 濃度之影響 ................................. 49
4-4 FTIR與XPS光譜分析 ..................... 49
4-5 光學特性分析 ................................. 50
4-5-1光學能隙的作圖 ............................... 52
4-6 化學機制 ................................. 52
4-7 鹼性電解液的沉積................................... 54
第五章 總 結 .................................... 55
參考文獻 ..................... 101
參考文獻 References
[1]. Sumio lijima, Nature, 354, 56(1991)
[2].余樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台北台灣,1993。
[3]. J. Esteve, M.C. Polo, G. Sanchez, Vacuum ,52, 133(1999)
[4].Zhu W, Stoner BR, Williams BE, Glass JT. Proc. of IEEE1991;79:642
[5].林玫君碩士論文,利用射頻電漿化學氣相沉積法成長類鑽石薄膜及其場發射特性之探討,1999 年
[6]. Aisenberg. S. and Chabot R. , J. Appl. Phys. 42, 2953 (1971)
[7] J.Robertson, Surf. Coat. Technol. 50, 185 (1992).
[8]. A. Grill, Diam. Relat. Mater, 8, 428 (1999)
[9].陳培麗,科儀新知,13(2) (1991) 82.
[10]. C.Z.Wang and K.M.Ho,Physical Review,B71 (1993) 1148.
[11]. 13. A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, 61, 14095-107(2000).
[12]. S.H. Yang, M. Yokoyama, “Electron emission behaviors of polycrystalline diamond-coated silicon emitters,” Jpn. J. Appl. Phys. 38, 209-212(1999).
[13]. A. Grill, “Electrical and optical properties of diamond-like carbon” Thin Solid Films, 355-356, 189-193(1999).
[14].錢國基,產業經濟第201 卷,民87.05,頁105-109。
[15]. P.P. Psyllaki, M. Jeandin, D.I. Pantelis, M. Allouard, “Pin-on-disk test of PE-CVD diamond-like carbon coatings on tool steel
substrates”, Surface and Coatings Technology, 130 (2000) pp.297-303.
[16]. A. Kumar, H. L. Chan, J. S. Kapat, “Deposition an characterization of titanium carbide coatings using laser ablation method”, Applied Surface Science, 127-129 (1998) pp.549-552.
[17]. V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, L. Jastrabik, “Hardness, intrinsic stress, and structure of the a-C and a-C:H films prepared by magnetron sputtering”, Diamond and Related Materials, 10 ( 2001) pp.1076-1081.
[18]. Q. Juna, L. Jianbin, W. Shizhu, J. Wang, W. Li, “Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD”, Surface and Coatings Technology, 128-129 (2000) pp.324-328.
[19]. D.Y. Wang, C.L. Chang, “Influences of optical emission settings on wear performance of metal-doped diamond-like carbon films deposited by unbalanced magnetron sputtering”, Thin Solid Films, 392 (2000) pp.11-15.
[20]. O. R. Monteiroa, I. G. Browna, “Tungsten-containing amorphous carbon Films deposited by pulsed vacuum arc”, Thin Solid Films, 342 (1999) pp.100-107.
[21]. a) Katsuyuki Okada, Shojiro Komatsu, Takamasa Ishigaki, and Seiichiro Matsumoto, Mat. Res. Soc. Symp. Proc. 363, 157 (1995); b) Hosun Lee and In-Young Kim, S.-S. Han, and B.-S. Bae, M. K. Choi, and In-Sang Yang, J. Appl. Phys. 90(2), 813, (2001).
[22]. Liang-Yih Chen and Franklin Chau-nan hong, Appl. Phys. Lett. 82(20), 3526 (2003).
[23]. M.K. Fung, K.H. Lai, C.Y. Chan, I. Bello, C.S. Lee, S.T. Lee, D.S. Mao, X. Wang, “Mechanical properties and corrosion studies of amorphous carbon on magnetic disks prepared by ECR plasma technique”, Thin Solid Films, 368 (2000) pp.208-210.
[24]. J. C. Phillips, Phys. Rev. Lett., 51 (1979) 1355.
[25]. J. C. Angus, and F. Jansen, J. Vac. Sci. Technol., A6 (1988) 1778.
[26].HARL E. SPEAR JOHN P. DISMUHES”, 1994
[27]. M. A. Tamor, and J. B. Wu, J. Appl. Phys., 67 (1990) 1007.
[28].科儀新知, Vol. 13, Iss 2, pp. 2 (1991)
[29].施各建碩士論文,鑽石薄膜成長參數與特性之研究,1998 年
[30]. Y. Namba, “Attempt to grow diamond phase carbon films from an organic solution”, Journal of Vacuum Science & Technology A, 10 (1992) pp.3368-3370.
[31]. T. Suzuki, Y. Manita, T. Yamazaki, S. Wada, and T. Noma, “Deposition of carbon films by electrolysis of a water-ethylene glycol solution”, Journal of Materials Science, 30 (1995) pp.2067-2069.
[32]. H Wang, MR Sheng, ZY Ning, C Ye, CB Cao, HY Dang, “Deposition of diamond-like carbon films by electrolysis of methanol solution”, Applied Physics Letters, 69 (1996) pp.1074-1076.
[33]. MC Tosin, AC Peterlevitz, GI Surdutovich, V Baranauskas, “Deposition of diamond and diamond-like carbon nuclei by electrolysis of alcohol solutions”, Applied Surface Science, 144-145 (1999) pp.260-264.
[34]. D Guo, K Cai, L Li, Y Huang, Z Gui, H Zhu, “Electrodeposition of diamond-like amorphous carbon films on Si from N,N-dimethylformamide”, Chemical Physics Letters, 329 (2000) pp.346-350.
[35]. H Wang, M Yoshimura “Electrodeposition of diamond-like carbon films in organic solvents using a thin wire anode”, Chemical Physics Letters, 348 (2001) pp.7-10.
[36]. JT Jiu, LP Li, CB Cao, HS Zhu, “Deposition of diamond-like carbon films by using liquid phase electrodeposition technique and its electron emission properties”, Journal of Materials Science, 36 (2001) pp.5801-5804.
[37]. RK Roy, B Deb, B Bhattacharjee, AK Pal, “Synthesis of diamond-like carbon film by novel electrodeposition route”, Thin Solid Films, 422 (2002) pp.92-97.
[38]. D Guo, K Cai, LT Li, Y Huang, ZL Gui, “Evaluation of carbon films electrodeposited on different substrates from different organic solvents”, Applied Physics A, 74 (2002) pp.69-72.
[39]. HS Zhu, JT Jiu, Q Fu, H Wang, CB Cao, “Aroused problems in the deposition of diamond-like carbon films by using the liquid phase electrodeposition technique”, Journal of Materials Science, 38 (2003) pp.141-145.
[40]. S. Gupta, R.K. Roy, B. Deb, S. Kundu, A.K. Pal, “Low voltage electrodeposition of diamond-like carbon films”, Materials Letters, 57 (2003) pp.3479-3485.
[41]. S Gupta, MP Chowdhury, AK Pal, S Gupta, MP Chowdhury, AK Pal, “Synthesis of DLC films by electrodeposition technique using formic acid as electrolyte”, Diamond & Related Materials, 13 (2004) pp.1680-1689.
[42]. S Gupta, R.K. Roy, B. Deb, S. Kundu, K. Pal A, “Low voltage electrodeposition of diamond like carbon (DLC)”, Applied Surface Science, 252 (2005) pp.296-302.
[43].林益楠,“低電位電沉積類鑽碳薄膜之研究”,中山大學,碩士論文 (2005)。
[44].P. B. Barna, Diagnostics and Applications of Thin Films Edited by L. Eckertova and T. Ruzicka; (1992) 295-310。
[45]. Donald A. Neamen “Semiconductor Physics & Devices”,3rd (2003)
[46].莊達人,VLSI 製造技術,第五章,高立圖書有限公司,2000。
[47].羅聖全,電子顯微鏡介紹 --SEM,材料世界網,2004
[48]. Douglas A. Skoog, F. James Holler and Stanley R. Crouch, “Principles of Instrumental Analysis, 6th Ed. (2006)
[49]. A.R. Forouhi and I. Bloomer, Phys. Rev. B, 34, 7018 (1986)
[50]. A.R. Forouhi and I. Bloomer, Phys. Rev. B, 38, 1865 (1988)
[51]. A.R. Forouhi and I. Bloomer, U.S. Patent No. 4,905,170
[52]. J. Szcrzyrbowski, Thin Solid Films, 130, 57 (1985)
[53]. Arrhenius, Svante. 1889. On the Reaction Velocity of the Inversion of Cane Sugar by Acids. Zeitschrift für Physikalische Chemie 4, 226(1889).
[54]. Wieder, M. Cardona, R. Guarnieri, Phys. Status Solidi B 92 (1979) 99.
[55]. J. Bullot, M.P. Schmidt, Phys. Status Solidi B 143 (1987) 345.
[56]. S.F. Yoon, J. Ahn, J. Vac. Sci. Technol. A, 15, 4, pp. 1832-1836
[57]. J.M. Lavine S.P. Sawan, Y.T. Shieh, A.J. Bellezza,Appl. Phys. Lett.,62,10, (1993) pp.1099-1100
[58]. F.Demichelies, G. Crovini, C.F. Pirri, E.Tresso, R. Galloni, R. Rizzoli, R. Rizzoli, C. Summonte, F. Zignani, P. Rava, Manan,Phil. Mag. B,69,2, (1994) pp.377-386
[59]. G. Lucovsky, J. Yang, S.S. Chao, F.E. Tyler, W. Czubatyj, Phys. Rev.B,28,6, (1983) pp.3225-3233
[60]. T. Jiang and K. Xu, Carbon Vol. 33, No. 12, (1995) pp. 1663-1671
[61]. Y. Ogata, H. Niki, T. Sakka, M. Iwasaki, J. Electrochem. Soc. 142 (1995) 1595.
[62]. N. Col thup, J. Opt. Soc. Am., (1950), 40, 397.
[63]. J. Tauc, “Optical properties and electronic structure of amorphous germanium”, Physica status solidi, 15, pp. 627, 1966.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.66.13
論文開放下載的時間是 校外不公開

Your IP address is 18.188.66.13
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code