Responsive image
博碩士論文 etd-0727111-002334 詳細資訊
Title page for etd-0727111-002334
論文名稱
Title
氮化硼薄膜於電阻式記憶體之特性分析及機制探討與 研究
Fabrication and Investigation on Boron Nitride based Thin Film for Non-Volatile Resistance Switching Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-06
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
氮氧化硼、電阻式記憶體、氮氧化鈦、釓、氧空缺
oxygen vacancy, filament, non-volatile memory, resistance switching, ReRAM
統計
Statistics
本論文已被瀏覽 5678 次,被下載 7
The thesis/dissertation has been browsed 5678 times, has been downloaded 7 times.
中文摘要
近年來,由於電子產品的蓬勃發展,非揮發性記憶體顯得日亦重要。然而快閃
記憶體在微縮上遇到了難以避免突破的瓶頸,因此許多新穎式的非揮發性記憶體的研
究與開發正熱烈的進行中。其中,電阻式記憶體元件具有結構簡單、低耗損能量、低
操作電壓、高操作速度和非破壞性存取等優點,使其成為新穎式非揮發性記憶體中的
最熱門人選。
在現今已被發表的研究成果中都提出金屬絲或氧空缺的理論來解釋電阻式記憶
體轉態機制。因此在本論文中,為了釐清金屬及氧對於電阻式記憶體特性的影響,我
們選擇不含有金屬材料的氮氧化硼薄膜做為電阻式記憶體元件的介電層材料。我們成
功的利用氮氧化硼薄膜配合白金上電極及氮化鈦下電極製作出具有電阻式記憶體特
性的元件,然而在穩定性方面有待加強。
為改善元件穩定性,我們透過在氮氧化硼薄膜中掺雜微量稀土族元素釓(Gd),
因為稀土元素價數單純(零價或三價),因而達到有效的集中氧空缺濃度。
由實驗結果證實,在掺雜釓後可以有效的改善舊有元件的穩定性。而另一方面,在Set
操作過程時我們觀察到負微分電阻現象,這是一般電阻式記憶體操作時所觀察不到的。
我們認為這是由於在Set 操作對下電極施加正偏壓時,氧離子受電場作用往下電極處
移動,並且與氮化鈦產生反應形成一層氮氧化鈦,而這層氮氧化鈦形成後將導致較高
的能障進而使得電流降低,此論點經由電流傳導機制成功的驗證。另外由於氮化鈦本
身具有非常容易與氧鍵結的特性,所以理論上高溫時氧離子受熱影響增加,將會產生
更明顯的氮氧化鈦層,這個想法也藉由一連串的變溫實驗所證實。
我們成功的利用不含有金屬材料的氮氧化硼薄膜製作出具有電阻式記憶體特性
ii
的元件,並進一步藉由掺雜釓(Gd)的方式來改善其穩定性.除此之外更發現了介面操
作形式的電阻切換現象。經由一連串的實驗證實,是由於介電層與下電極介面處的一
層薄氮氧化鈦所造成。然而因為這層氮氧化鈦極易產生也將使得元件無可避免的伴隨
出資料保存時間(Data Retention Time)問題。
Abstract
In recent years, due to the rapid development of electronic products, non-volatile
memory has become more and more important. However, flash memory has faced some
physical limits bottleneck with size scaling-down. In order to overcome this problem,
alternative memory technologies have been extensively investigated, including ferroelectric
random access memory (FeRAM), magneto resistive RAM (MRAM), phase-change RAM
(PRAM), and resistive RAM (RRAM). All of this potential next generation non-volatile
memory, the resistive random access memory has most advantages such as simple structure,
lower consumption of energy, lower operating voltage, high operating speed, high storage
time and non-destructive access, which make it be the most potential candidate of the next
generation non-volatile memory.
Many studies have proposed to explain the resistance switching phenomenon, which
is due to the metallic filament or the oxygen vacancies. Therefore, in order to investigate
the influence of resistance switching characteristic by metal or oxygen, we choose the
non-metal contained boron oxy-nitride film as the insulator layer and successfully make the
resistance has the switchable characteristic of this device. Furthermore, we improved the
iv
stability by using the Gadolinium-doped method in the boron oxy-nitride based film. In
addition, we observed the negative current differential phenomenon during the set process,
which can further controlled by lower operating voltage to achieve the interfacial resistance
switching. We think that is due to the formation of nitrogen titanium oxide at the interface
between insulator layer and titanium nitride electrode, which caused the Schottky barrier
formation and reduced the current flow. In addition, current conduction fitting can also
confirm this hypothesis. Besides, titanium nitride easily bond with oxygen ions; moreover,
the oxygen ions can be easily disturbed at higher temperature ambient. We believed there
may easily form the nitrogen titanium oxide layer in higher temperature environment;
which also improve by a series of varied temperature experiments. However, this nitrogen
titanium oxide layer formed naturally very easily, resulting in an inevitable problem of data
retention time, which wish to be resolved in the future.
目次 Table of Contents
Abstract (Chinese) ……………………………………………………...i
Abstract (English) ……………………………………………………....iii
Acknowledgement …………………………………………………........v
Contents ……………………………………………………………........vi
Table Captions ………………………………………………………….x
Figure Captions ………………………………………………………...xi
Chapter 1 Introduction ………………………………………………...1
1.1 The development of memory
1.1.1FLASH memory………………………………………….1
1.2 Introduction of advanced memory
1.2.1 FeRAM (Ferroelectric RAM)……………………………2
1.2.2 MRAM (Magnetic RAM)………………………………..2
1.2.3 PRAM (Phase RAM)…………………………………….3
1.2.4 RRAM (Resistive RAM)………………………………...3
Chapter 2 Literature
2.1 The Switching Mechanism of Resistive RAM
2.1.1 Filamentary model……………………….……………...9
2.1.1.1 Joule heating effect……………………………….10
2.1.1.2 Redox Processes by cation migration…………….12
vii
2.1.1.3 Redox processes by anion migration………….......12
2.1.2 Charge Trapping and Detrapping Model………….…….13
2.1.3 Schottky barrier modulation………………………...…..14
2.2 The mechanism of current conduction
2.2.1 Ohmic conduction………………………………….……15
2.2.2 Schottky emission……………………………….………15
2.2.3 Poole-Frankel emission……………………………….…16
2.2.4 Tunneling………………………………………..…..…...17
2.2.5 Space Charge Limit Current………………………….…17
Chapter 3 Device Fabrication
3.1 Structure and Fabrication
3.1.1 Pt/BON/TiN……………………………………………..22
3.1.2 Pt/BON:Gd/TiN…………………………………………23
3.1.3 Pt/Gd2O3/TiN…………………………………………...23
Chapter 4 Experiment Results and Discussion
4.1 ReRAM Characteristic of BON thin film
4.1.1 Motivation and material analysis of BON thin film……...27
4.1.2 Electrical measurement result and discussion……………27
4.1.2.1 Forming process and Operate process……………...27
4.1.2.2 Reliability and stability……………………………..28
viii
4.1.2.3 Temperature variation without resistance switching..30
4.1.2.4 Mechanism of Forming process…………….………30
4.1.2.5 Mechanism of Resistance Switching process………31
4.1.2.6 Size Effect…………………………………………..31
4.1.3 Summary1………………………………………………….32
4.2 ReRAM Characteristic of BON dope Gd thin film
4.2.1 Forming and material analysis compared………………….33
4.2.3 Electrical measurement result and discussion………….…..34
4.2.3.1 I-V Curve and Temperature Effect………….……..34
4.2.3.2 Multi-Level by using different current compliance.34
4.2.3.3 Reliability and stability……………………………36
4.2.3.4 Resistance Stitching Mechanism…………….…….36
4.2.4 Summary2………………………………………………….37
4.3 Interface type ReRAM of BON dope Gd thin film
4.3.1 Interface type ReRAM…………………………………….38
4.3.1.1 Practicality of interface type ReRAM…………….39
4.3.2 Mechanism of interface type ReRAM……………………..39
4.3.3 Authentication of interface type ReRAM Mechanism……..40
4.3.4 Summary3………………………………………………….42
4.4 Comparing the switching behaviors of different Gd2O3 thickness
ix
4.4.1Verification of dope Gd……..………….……………..…….42
4.4.2 Different thickness of Gd2O30….………………..….…….43
4.4.3 Summary4………………………………………………….44
Chapter 5 Conclusion………………………………………………………71
參考文獻 References
[1] I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, "Highly
scalable non-volatile resistive memory using simple binary oxide driven by
asymmetric unipolar voltage pulses", IEEE, 2005
[2] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and
Recai Sezi, "Status and Outlook of Emerging Nonvolatile Memory Technologies",
IEEE, 2004
[3] 簡昭欣, 呂正傑, 陳志遠, 張茂男, 許世祿, 趙天生, "先進記憶體簡介", 國
研科技創刊號, 2004
[4] 葉林秀, 李佳謀, 徐明豐, 吳德和, "磁阻式隨機存取記憶體技術的發展現在
與未來", 物理雙月刊, 2004
[5] 劉志益, 曾俊元, "電阻式非揮發性記憶體之近期發展", 電子月刊, 2005
[6] Akihito Sawa, "Resistive switching in transition metal oxide", materials today, 2008
[7] B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, 1. F. Kang, "Bipolar
Resistive Switching Behaviors of Ag/SiN/Pt Memory Device", IEEE, 2008
[8] Y. Sato, K. Kinoshita, M. Aoki, "Consideration of switching mechanism of binary
metal oxide resistive junctions using a thermal reaction model", Applied Physics
Letters, 2007
[9] R. Waser, M. Aono, "Nanoionics-based resistive switching memories", Nature
materials, 2007
[10] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model for filamentary
streamers in an ambient field", IEEE, 2003
[11] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in Pt/Al2O3/TiO2/Ru
stacked structures", Electrochemical and Solid State Letters, 2006.
74
[12] M. J. Rozenberg, I. H. Inoue et al., "Nonvolatile memory with Multilevel
Switching: A Basic Model", Physical Review Letter, 2004
[13]施敏, 伍國珏, 半導體元件物理學,國立交通大學出版社, 2008
[14] J. Ye, S. Ulrich, C. Ziebert, M. Stüber "Stress reduction of cubic boron nitride
films by oxygen addition" Thin Solid Films, 2008
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.12.222
論文開放下載的時間是 校外不公開

Your IP address is 18.118.12.222
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code