Responsive image
博碩士論文 etd-0727111-002623 詳細資訊
Title page for etd-0727111-002623
論文名稱
Title
可整合於表面聲波元件之可調式多頻縮小化碎形天線設計
Design of Tunable Multi-Band Miniature Fractal Antennas on a SAW Substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-15
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
天線、可調式頻率比、碎形、縮小化、壓電材料、表面聲波
Antenna, Tunable frequency ratio, Fractal, Piezoelectric material, Surface Acoustic Wave, Miniature
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
在本論文中,主要以Sierpinski Gasket碎形結構天線來研究其操作頻率比例之調控性,並以現今廣泛應用於表面聲波元件的壓電材料作為基板設計;最後,藉由碎形結構及壓電基板材料以達到天線縮小化之目的,使得天線在無線通訊產品的應用上可更加廣泛被利用。
首先是以Sierpinski Gasket碎形天線設計在FR4基板上,並提出一種不對稱的Sierpinski Gasket碎形結構,再藉由選取適當的不連續點,設計出可調式頻率比例且適用於IEEE 802.11b/g/a無線通訊頻帶的三頻天線。
接著將Sierpinski Gasket碎形結構初步設計在壓電基板材料上,並對模擬特性與實作量測結果做比較,用以改善製程上的非理想因素;進而設計共平面波導、耦合饋入及導電銀膠接地的方式,將half-Sierpinski Gasket碎形結構做高階疊代之設計,與現有產品的設計相比,本論文提出之天線,縮小尺寸至5x5mm^2,並且易與表面聲波元件做整合,可用於GPS頻帶與IEEE 802.11b/g無線通訊頻帶的雙頻縮小化碎形天線。
Abstract
In this thesis, the study focuses on the tunable frequency ratio of Sierpinski Gasket fractal antennas and we use the SAW substrate of piezoelectric material. By using the fractal structure and the substrate of piezoelectric material, the goal of the miniaturized antenna is achieved. The proposed antenna can be widely used in wireless communication products.
Firstly, we design the Sierpinski Gasket fractal antenna on the FR4 substrate. The asymmetric geometry of Sierpinski Gasket fractal structure is proposed and we choose the proper discontinuity locations to design the three-band and tunable antenna for IEEE 802.11b/g/a wireless communication systems.
The preliminary design of the Sierpinski Gasket fractal structure on the piezoelectric substrate allows us to compare simulated and measured results to improve the non-ideal processing factors. Finally, comparing with the existing products, we reduce the size of the miniaturized fractal antenna to 5x5mm^2 on the SAW substrate by coplanar waveguide, coupled-fed, shorting with conductive adhesive and high iteration stage of half-Sierpinski Gasket fractal structure for GPS band and IEEE 802.11b/g applications.
目次 Table of Contents
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract iii
目 錄 v
圖 次 vii
表 次 xi
第一章 序論 1
1.1研究背景介紹 1
1.2研究動機 1
1.3研究方法 6
1.4論文大綱 6
第二章 Sierpinski Gasket碎形天線之頻率比分析 8
2.1 Sierpinski Gasket碎形天線簡介 8
2.2調整頻率比之方法 13
2.3 Sierpinski Gasket碎形天線之三頻設計 23
2.4實作與量測探討 26
第三章 Sierpinski Gasket碎形天線於壓電基板上之設計 29
3.1壓電材料概述 29
3.2 Sierpinski Gasket在壓電基板上之特性模擬與設計 34
3.3實作與量測 39
3.4實作之非理想製程因素探討 42
第四章 適用於GPS與WLAN頻帶之縮小化碎形天線 49
4.1共平面波導之饋入設計 49
4.2提升輻射效率之導電銀膠接地設計 51
4.3 Half-Sierpinski Gasket之多階結構縮小化設計 55
4.4 實作與量測結果之探討分析 58
第五章 結論 62
參考文獻 63
參考文獻 References
[1] S. H. Wi, J. S. Kim, N. K. Kang, J. C. Kim, H. G. Yang, Y. S. Kim, and J. G. Yook, “Package-level integrated LTCC antenna for RF package application,” IEEE Trans. Adv. Packag., vol. 30, pp. 132–141, Feb. 2007.
[2] H. O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals. New York: New Frontiers of Science, Springer-Verlag, 1992.
[3] M. F. Bamsley, Fractals Everywhere, 2nd ed. New York: Academic Press Professional, 1993.
[4] D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. Mag., vol. 45, pp. 38–57, Feb. 2003.
[5] S. W. Su, K. L. Wong, C. L. Tang, and S. H. Yeh, “Wideband monopole antenna integrated within the front-end module package,” IEEE Trans. Antennas Propag., vol. 54, pp. 1888–1891, Jun. 2006.
[6] M. R. Hsu and K. L. Wong, “WWAN ceramic chip antenna for mobile phone application,” Microw. Opt. Technol. Lett., vol. 51, pp. 103–110, Jan. 2009.
[7] D. H. Werner and R. Mittra, Eds., Frontiers in Electromagnetics. Ch. 2. Piscataway, NJ: IEEE Press, 1999.
[8] C. Puente, J. Romeu, R. Pous, and A. Cardama, “On the behavior of the Sierpinski multiband antenna,” IEEE Trans. Antennas Propag., vol. 46, no. 4, pp. 517–524, Apr. 1998.
[9] Wojciech J. Krzysztofik, “Modified Sierpinski fractal monopole for ISM-bands handset applications,” IEEE Trans. Antennas Propag., vol. 57, no. 3, pp. 606–615, Mar. 2003.
[10] Tsachtsiris, G. F., C. F. Soras, M. P. Karaboikis, and V. T. Makios, “Analysis of a modified Sierpinski Gasket monopole antenna printed on dual band wireless devices,” IEEE Trans. Antennas Propag., vol. 52, no. 10, pp. 2571–2579, 2004.
[11] C. Puente, M. Navarro, J. Romeu, and R. Pous, “Variations on the fractal Sierpinski antenna flare angle,” IEEE International Symposium on Antennas and Propagation Digest, vol. 4, pp. 2340–2343, June 1998.
[12] C. Puente, J. Romeu, R. Bartolome, and R. Pous, “Perturbation of the Sierpinski antenna to allocate operating bands,” Inst. Elect. Eng. Electron. Lett., vol. 32, no. 24, pp. 2186–2187, Nov. 1996.
[13] C. Borja and J. Romen, “Multiband Sierpinski fractal patch antenna,” IEEE International Symposium on Antennas and Propagation Digest, vol. 3, pp. 1708–1711, July 2000.
[14] J. F. Shackelford, Introduction to Materials Science for Engineers. 4th ed. New Jersey: Prentice-Hall, 1985.
[15] T. C. Lim and G. W. Farnell, “Search for forbidden directions of elastic surface‐wave propagation in anisotropic crystals,” J. Appl. Phys., vol. 39, pp. 4319, 1968.
[16] C. K. Campbell, Surface Acoustic Wave Device for Mobile and Wireless Communications. Academic Press, 1988.
[17] D. M. Pozar, Microwave Engineering. 3rd ed. Ch. 3. New Jersey: John Wiley & Sons, Hoboken, 2005.
[18] Kamp Lintfort, Coplanar Microwave Integrated Circuits. Ch. 2. New Jersey: John Wiley & Sons, Hoboken, 2006.
[19] K. Hettak, G. Y. Delisle, G. A. Morin, S. Toutain and M. Stubbs, “A novel variant 60-GHz CPW-Fed patch antenna for broadband short range wireless communications,” IEEE International Symposium on Antennas and Propagation Society, 2008.
[20] Yoon, J. K., D. H. Kim, and C. D. Park, “Implementation of UWB antenna with bandpass filter using microstrip-to-CPW transition matching,” Asia Pacific Microwave Conference, pp. 2553–2556, 2009.
[21] K. G. Thomas and M. Sreenivasan, “Compact CPW-fed dual-band antenna,” Inst. Elect. Eng. Electron. Lett., vol. 46, no. 1, pp. 13–14, Jan. 2010.
[22] N. Koopman, G. Adema, S. Nangalia, M. Schneider, and V. Saba, “Flip chip process development techniques using a modified laboratory aligner bonder,” IEEE/CPMT Electronics Manufacturing Technology Symposium, pp. 29–35, 1995.
[23] G. Baynham, Daniel F. Baldwin, K. Boustedt, S. Kandelid, F. Mattsson, C. Wennerholm, A. Johansson, D. Patterson, Peter Elenius, and H. Balkan, “Lead-free flip chip processing with halogen-free high density microvia substrates,” IEEE/CPMT Electronics Manufacturing Technology Symposium, pp. 263–269, 2000.
[24] Gheorghe Pascariu, Peter Cronin, and Daniel Crowley, “Next generation electronics packaging utilizing flip chip technology,” IEEE/CPMT/SEMI Electronics Manufacturing Technology Symposium, pp. 423–426, 2003.
[25] “Fractus 1.575 GHz GPS Antenna,” http://www.fractus.com/sales_documents/FR05-S1-E-0-103/UM_FR05_S1_E_0_103.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.90.141
論文開放下載的時間是 校外不公開

Your IP address is 18.116.90.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code