Responsive image
博碩士論文 etd-0727111-103812 詳細資訊
Title page for etd-0727111-103812
論文名稱
Title
中央鑽孔鈦金屬/碳纖維/聚醚醚酮奈米複材積層板承受二梯階應力譜之響應
Fatigue Response of Centrally Notched Ti/APC-2 Nanocomposite Laminates by Two-Step Loading Cyclic Tests
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-30
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
奈米複材積層板、鑽孔、二階梯應力譜、疲勞、鈦金屬
titanium alloy, notch, nanocomposite laminate, two-step-loading, fatigue
統計
Statistics
本論文已被瀏覽 5690 次,被下載 4
The thesis/dissertation has been browsed 5690 times, has been downloaded 4 times.
中文摘要
本實驗主要在探討中央鑽孔鈦金屬/碳纖維/聚醚醚酮奈米複材積層板承受二梯階應力譜之響應及鑽孔效應。試片是使用三層鈦金屬及二層碳纖維/聚醚醚酮組成,並在碳纖維/聚醚醚酮表面均勻噴灑奈米微粒,奈米微粒占總重量的1%,接著碳纖維/聚醚醚酮依十字疊及類似均向疊兩種疊序排放,之後使用改良隔膜成型法熱壓,壓製成試片,再進行切割及鑽孔,鑽孔孔徑為4mm及6mm。
接著在室溫下進行靜態拉伸試驗及疲勞試驗,並將所得之數據取90%σnom及70%σnom進行二階梯應力譜試驗,二階梯應力譜試驗可分成高應力→低應力及低應力→高應力兩種,其中90%σnom為高應力,70%σnom為低應力,首先施加第一階段應力的50%疲勞壽命,接著再施加第二階段應力,直至試片斷裂。
進行完所有實驗後,可得到幾點結論:第一,鑽孔效應對十字疊之影響較大,將未鑽孔試片與鑽孔試片之拉伸數據作比較,可發現鑽孔後十字疊極限負載之強度減少50%左右,類似均向疊極限負載之強度減少30%,且隨著鑽孔孔徑的增加,十字疊及類似均向疊試片之極限負載也越來越接近;第二,十字疊或類似均向疊的中央鑽孔4mm試片和中央鑽孔6mm試片之負載-疲勞振次曲線都很吻合,抗疲勞性質皆差不多,而未鑽孔十字疊試片抗疲勞性質略差於中央鑽孔十字疊試片,未鑽孔類似均向疊試片抗疲勞性質則是優於中央鑽孔類似均向疊試片;第三,在二階梯應力譜試驗中,中央鑽孔類似均向疊試片之平均疲勞壽命較中央鑽孔十字疊試片高,且受鑽孔效應之影響,中央鑽孔4mm試片之平均疲勞壽命皆比中央鑽孔6mm試片高。
Abstract
The aims of this thesis to investigate the two step loading of Ti/APC-2 hybrid nanocomposite laminates and their notched effect. Ti/APC-2 laminates were composed of three layers of titanium sheets and two layers of APC-2. Nanoparticles SiO2 were dispersed uniformly on the interfaces of APC-2 with the optimal amount of 1 wt %. Then, APC-2 was stacked according to cross-ply [0/90]s and quasi-isotropic [0/45/90/-45] sequences. The modified diaphragm curing process was adopted to fabricate the hybrid panels for minimal impact of production. The panels were cur into samples and drilled an diameter hole in the center with diameters of 4 or 6 mm.
Both tension and fatigue tests were carried out with MTS 810 universal testing machine at room temperature. Also, two-step loading tests include high→low and low→high tests, were conducted. 0.9σnom is denoted as high load and 0.7σnom low load for two-step loading spectrum. In both high→low and low→high step loadings the first step is to do cyclic tests at a half life of the corresponding load, and then finish it due to last step load.
From the received results, some conclusions were made. First, the ultimate load of notched cross-ply samples was reduced about 50% and the notched quasi-isotropic samples reduced about 30% compared to their unnotched counterparts. Second, the S-N curves are very close for both centrally notched samples of diameters 4 mm and 6 mm in cross-ply and quasi-isotropic samples. Third, quasi-isotropic samples had higher average values of cumulative damage than cross-ply samples. Because of notched effect centrally notched samples of diameters 4 mm had higher average values of cumulative damage than centrally notched samples of diameters 6 mm.
目次 Table of Contents
摘要 i
ABSTRACT ii
目 錄 iii
圖目錄 v
表目錄 viii

第一章 緒論 1
1-1前言 1
1-2材料簡介 1
1-2-1複合材料概述 1
1-2-2 奈米材料性質簡介 1
1-2-3 奈米複合材料簡介 2
1-2-4實驗材料簡介 3
1-3研究方向 4
1-4文獻回顧 5
1-5組織與章節 7
第二章 疲勞損傷累積理論 8
2-1疲勞損傷機制 8
2-2疲勞損傷累積理論 8
第三章 實驗設備及方法 10
3-1儀器設備 10
3-2中央鑽孔鈦金屬/碳纖維/聚醚醚酮奈米複材積層板之製程 11
3-2-1鈦金屬之前處理 11
3-2-2 APC-2預浸布之前處理 11
3-2-3熱壓製程 11
3-2-4試片切割及鑽孔 12
3-3拉伸及疲勞試驗 12
3-4二階梯應力譜試驗 13
第四章 實驗結果 22
4-1靜態拉伸試驗 22
4-2疲勞試驗 22
4-3二階梯應力譜試驗 23
4-4試片觀察 23
4-5鈦合金表面處理 24
第五章 分析與討論 49
5-1 鑽孔效應之影響 49
5-1-1拉伸試驗 49
5-1-2疲勞試驗 50
5-2二階梯應力譜對試片之影響 51
5-3二階梯應力譜之試片破壞模式 53
第六章 結論 61
參 考 文 獻 62

參考文獻 References
[1] 周森, “複合材料-奈米、生物科技”, 全威出版社, 2002.
[2] Vlot A. Historical overview. In: Fibre metal laminates; an introduction. Dordrecht: Kluwer Academic Publishers, 2001.
[3] Marissen, R., “Flight Simulation Behavior of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, pp.261-277, 1984.
[4] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H., “Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., pp. 1081-1089, 1984.
[5] Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., pp. 1271-1279, 1987.
[6] Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, Composites, Vol. 22, No. 2, pp. 135-141, 1991.
[7] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3, pp. 361-377, 1989.
[8] Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum (ARALL) Laminates with Fatigue Cracks”, Polymer Composites, Vol. 10, No. 5, pp. 322-327, 1989.
[9] Krishnakumar S., “Fiber metal laminates: the synthesis of metals and composites”, Mater Manuf Process, Vol.9, pp. 295-354, 1994.
[10] Cortes P., Cantwell W.J., “Fracture properties of a fiber–metal laminates based on magnesium alloy”, Composites: Part B, Vol. 37, pp. 163-170, 2006.
[11] Reyes G., “Processing and characterization of the mechanical properties of novel fibre–metal laminates”, PhD thesis, University of Liverpool, 2002.
[12] Li E., Johnson WS., “An investigation into fatigue of a hybrid titanium composite laminate”, J. Compos. Technol. Res., Vol. 20, pp. 3-12, 1998.
[13] Cortes P., Cantwell WJ., “The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber–metal laminates”, J. Reinf. Plast. Compos., Vol. 23, pp. 1615-1623, 2004.
[14] Diao, X., Lin, T., and Mai, Y. W.,“Fatigue Behavior of CF/ PEEK Composites Kaminates Made From Commingled Prepreg. Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749-755, 1997.
[15] Gardin, C. H., Frenot, M. C. L., “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites, Vol.23, pp.109-116, 1992.
[16] Moffatt, J.E., Plumbridge, W.J., Hermann, R., “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23-29, 1997.
[17] Rao, K.T.V., Ritchie, R.O., “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167-4180,1998.
[18] Xia, K., Langdon, T.G., “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487-5492, 1996.
[19] Telreja, R., Fatigue of Composite Materials, Technomic Publishing Co. Inc, 1987.
[20] Hwang, W., Han, K.S., “Fatigue of Composite-Fatigue Modulus Concept and Life Prediction”, Journal of Composite Materials, Vol.20, pp.154-165, 1986.
[21] Subramanian S., Reifsnider K.L., Stinchcomb W.W., “A Cumulative Damage Model to Predict the Fatigue Life of Composite Laminates Including the Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343-351, 1995.
[22] Miyano, Y., Nakada, M., “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619-638, 1997.
[23] Schaff, J. R., “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158-181, 1997.
[24] Song, D. Y., “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329-335, 1997.
[25] Hwang, W., Han, K. S., “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87-102, 1989.
[26] Knut, O. R., Andreas, T. E., “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A, pp.485-491, 1996.
[27] Collins J.A, “Failure of Materials in Mechanical Design: Analysis, Prediction and Prevention”, John Wiley & Son, 1981.
[28] 林秋堂,“碳纖維強化鋁合金夾層板之疲勞裂縫成長機構”, 國立中山大學材料科學所博士論文, 1994.
[29] 李傳華, " 複合材料積層板疲勞強度與壽命預測及層間應力分析 ", 國立中山大學機械所博士論文, 1998.
[30] 彭聖森, “ 碳纖維/聚醚醚酮複合材料積層板溫度效應對疲勞破壞行為之影響 ”, 國立中山大學機械所碩士論文, 1999.
[31] 陳偉仁, “ 碳纖維/聚醚醚酮複合材料積層板之高溫度疲勞探討 ”, 國立中山大學機械所碩士論文, 2002.
[32] 蔡健民, “以奈米粉體強化之高性能高分子PEEK製程與機械性質分析 ”, 國立中山大學材料科學所碩士論文, 2003.
[33] 吳俊憲, “石墨纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討”, 國立中山大學機電所碩士論文, 2004.
[34] 賴盈達, “鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討”, 國立中山大學機電所碩士論文, 2008.
[35] 劉俊吾, “鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討”, 國立中山大學機電所碩士論文, 2009.
[36] 張哲愷, “鈦合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討”, 國立中山大學機電所碩士論文, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.194.39
論文開放下載的時間是 校外不公開

Your IP address is 18.217.194.39
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code