Responsive image
博碩士論文 etd-0727111-103904 詳細資訊
Title page for etd-0727111-103904
論文名稱
Title
研究染料鍵結與吸附量以改善染料敏化太陽能電池之效率
Study of Coordination and Adsorption of Dye and Improvement of Dye-sensitized Solar Cell Efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-22
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
染料吸附、染料鍵結、表面氫化、光觸媒、二氧化鈦、染料敏化太陽能電池
Photocatalysis, TiO2, Dye-sensitized solar cell (DSSC), Absorbance, Coordination mode, Protonate
統計
Statistics
本論文已被瀏覽 5680 次,被下載 0
The thesis/dissertation has been browsed 5680 times, has been downloaded 0 times.
中文摘要
隨著石油短缺,太陽能等替代能源漸受重視。其中,染料敏化太陽電池(DSSC)因其製作方法簡單、成本低廉且具有良好的光電轉換效率,使各國研究團隊近年來積極投入發展。
本篇論文研究中,針對染料敏化太陽能電池之二氧化鈦染料吸附層,使用紫外光照射及酸溶液如鹽酸進行表面處理,提升電池之光電轉換效率。紫外光照射二氧化鈦使二氧化鈦產生光觸媒效應除去表面有機污染物,可增加染料吸附量,但同時改變染料中螯合基(COO-)與二氧化鈦鍵結的方式,降低電子傳輸效率。在紫外光照射之後使用鹽酸處理法,可保有染料原本鍵結方式,利於電子傳輸;除此之外,H+離子也會吸附在二氧化鈦表面,對染料之COO-螯合基產生靜電力,更加提升染料吸附量,因此改進染料敏化太陽電池之效率。
我們也利用傅氏紅外光譜儀探討染料-二氧化鈦鍵結,電化學阻抗分析儀探討各界面內電阻,X射線光電子能譜儀探討元素比例與表面特性,紫外光-可見光吸收光譜儀探討吸收光譜,掃描式電子顯微鏡探討表面型態,電流-電壓曲線量測探討染料敏化太陽能特性與光電轉換效率。
實驗結果顯示,轉換效率從未處理的6.29%,經紫外光處理提升至6.71 %,若照射紫外光再以鹽酸容易處理更可達7.39 %。
Abstract
Alternative energy sources such as solar energy have attracted an extensive interest in the petroleum shortage era. Among solar cells, dye-sensitized solar cell (DSSC) attracts the attention of widespread research teams because of the easy-production process, low cost, and good photon-to-electron conversion efficiency.
In this study, both UV and acid solution such as HCl are used to improve the efficiency of DSSC. The UV illumination can eliminate organic contaminates on TiO2 by photocatalysis and enhance the adsorption of dye molecules. Meanwhile, the coordination mode between TiO2 and dye could be changed and lower the electron transportation. If the HCl solution is used after UV illumination, the coordination mode can be preserved. Moreover, H+ from HCl can attract the COO- anchoring group of dye by electrostatic force. It further increases the adsorption of dye and improves the DSSC efficiency.
The coordination mode was measured by Fourier-transform infrared spectrometer (FTIR). The internal resistance was measured by electrical impedance spectroscopy (EIS). The chemical properties were characterized by X-ray photoelectron spectroscopy (XPS). The light absorbance was measured by ultraviolet-visible spectroscopy (UV-Vis). The morphology was observed by field emission scanning electron microscope (FE-SEM). The performance of the cells was measured by a semiconductor device analyzer.
In our results, the conversion efficiency was improved from 6.29% of untreated one to 6.71 and 7.39% for UV and UV + HCl treated ones.
目次 Table of Contents
論文審定書 i
ACKNOWLEDGEMENT ii
摘 要 iii
ABSTRACT iv
Chapter 1 1
Introduction 1
1.1 Energy crisis 1
1.2 Solar energy 2
1.3 Photovoltaic cell performance 2
1.4 The three generations 5
1.5 Operation principle of the dye-sensitized solar cell 9
1.6 Motivation 11
1.6.1 Photocatalysis reaction on TiO2 surface by UV illumination 11
1.6.2 Preservation of Coordination mode 13
1.6.3 Acid treatment 15
Chapter 2 17
Experimental 17
2.1 Materials 17
2.2 Preparation of solution 18
2.2.1 Choice and preparation of acid solution 18
2.2.2 Preparation of dye solution 18
2.3 Choice of UV treated timing 19
2.3.1 UV illumination as dye anchoring 19
2.3.2 Double UV illumination as dye anchoring 21
2.3.3 UV illumination before dye anchoring 22
2.4 Fabrication of solar cell 24
2.4.1 Without treatment 24
2.4.2 UV treatment 25
2.4.3 UV + HCl treatment 26
2.4.4 UV + TiCl4 treatment 29
2.5 Measurement 31
Chapter 3 32
Results and discussion 32
3.1 UV treatment 32
3.1.1 Fourier-transform infrared spectrometer (FTIR) analysis 32
3.1.2 Electrical impedance spectroscopy (EIS) analysis 34
3.1.3 X-ray photoelectron spectra (XPS) analysis 35
3.1.4 Ultraviolet-visible spectrophotometer (UV-Vis) analysis 38
3.1.5 Proformance of DSSC 39
3.2 UV + HCl treatment 41
3.2.1 Fourier-transform infrared spectrometer (FTIR) analysis 41
3.2.2 Electrical impedance spectroscopy (EIS) analysis 43
3.2.3 X-ray photoelectron spectra (XPS) analysis 44
3.2.4 Ultraviolet-visible spectrophotometer (UV-Vis) analysis 46
3.2.5 Proformance of DSSC 47
Chapter 4 52
Conclusion 52
References 54
Chapter 1 54
Chapter 2 57
Chapter 3 58
Appendix 63
1. Introduction 63
A.1.1 Anti-reflection coating – “Moth eye” principle 63
A.1.2 Structure conditions for moth eye effect 63
A.1.3 Effective medium theories 64
A.1.4 Property of ASD-ZnO nanotip 66
2. Experimental 67
A.2.1 ZnO seed layer prepared by RF sputtering 67
A.2.2 Fabrication of DSSC 68
A.2.3 Growth of ASD-ZnO nanotip 69
3. Results and discussion 73
A.3.1 Effective refractive index 73
A.3.2 Performance of DSSC with ZnO nanotip 76
References 78

參考文獻 References
[1.1] http://planetforlife.com/
[1.2] http://www.fi.edu/guide/hughes/renewables.html
[1.3] James A. Kent, Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, 11th ed., pp. 1449, U.S.A.: Springer-Verlag, 2007.
[1.4] J. Halme, Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests, Master's thesis, pp. 24-25, HELSINKI UNIVERSITY OF TECHNOLOGY, Department of Engineering Physics and Mathematics, Espoo, Finland, 2002.
[1.5] M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, pp. 1-4, New York: Springer-Verlag, 2006.
[1.6] M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145–153, 2003.
[1.7] K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, P. M. Sirimanne, and K. G. U. Wijayantha, “Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 94, pp. 217–220, 1996.
[1.8] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1–21, 2000.
[1.9] Z. Tebby, O. Babot, T. Toupance, D.-H. Park, G. Campet, and M.-H. Delville, “Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO2 Films: An Original Route toward Plastic Electrochromic Systems,” Chem. Mater., vol. 20, pp. 7260–7267, 2008.
[1.10] Z. Tebby, O. Babot, D. Michau, L. Hirsch, L. Carlos, and T. Toupance, “A simple route towards low-temperature processing of nanoporous thin films using UV-irradiation: Application for dye solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 205, pp. 70–76, 2009.
[1.11] T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka,” Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 187–191, 2004.
[1.12] K. Guan, “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface & Coatings Technology, vol. 191, pp. 155–160, 2005.
[1.13] D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, and J. A. Ayllon, “New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 175, pp. 165–171, 2005.
[1.14] S. A. V. Eremia, D. Chevalier-Lucia, G. Radu, and J. Marty, “Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology,” Talanta, vol. 77, pp. 858–862, 2008.
[1.15] http://www.photocatalyst.co.jp/toha/toha.htm
[1.16] G. B. Deacon and R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coordination Chemistry Reviews, vol. 33, pp. 227–250, 1980.
[1.17] A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Gra1tzel, “Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations,” J. Phys. Chem. B, vol. 104, pp. 1300–1306, 2000.
[1.18] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gra1tzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell,” J. Phys. Chem. B, vol. 107, pp. 8981–8987, 2003.
[1.19] C. P. Leo´n, L. Kador, B. Peng, and M. Thelakkat, “Characterization of the Adsorption of Ru-bpy Dyes on Mesoporous TiO2 Films with UV−Vis, Raman, and FTIR Spectroscopies,” J. Phys. Chem. B, vol. 110, pp. 8723–8730, 2006.
[1.20] K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, “Vibrational Spectroscopic Study of the Coordination of (2,2’-Bipyridyl-4,4’-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania,” Langmuir, vol. 14, pp. 2744–2749, 1998.
[1.21] V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells,” Materials Science and Engineering R, vol. 63, pp. 81–99, 2009.
[1.22] Z. S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, “Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films,” Langmuir, vol. 21, pp. 4272–4276, 2005.
[2.1] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, vol. 516, pp. 4613–4619, 2008.
[2.2] F. Hirose, K. Kuribayashi, M. Shikaku, Y. Narita, Y. Takahashi, Y. Kimura, and M. Niwanob, “Adsorption Density Control of N719 on TiO2 Electrodes for Highly Efficient Dye-Sensitized Solar Cells,” Journal of The Electrochemical Society, vol. 156, no. 9, 987–990, 2009.
[2.3] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol 47, pp. 4213–4225, 2002.
[2.4] Y. V. Zubavichus, Y. L. Slovokhotov, Md. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel and V. Shklover, “Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2 Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study,” Chem. Mater., vol. 14, pp. 3556–3563, 2002.
[3.1] F. Hirose, K. Kuribayashi, M. Shikaku, Y. Narita, Y. Takahashi, Y. Kimura, and M. Niwanob, “Adsorption Density Control of N719 on TiO2 Electrodes for Highly Efficient Dye-Sensitized Solar Cells,” Journal of The Electrochemical Society, vol. 156, no. 9, 987–990, 2009.
[3.2] S. A. V. Eremia, D. Chevalier-Lucia, G. Radu, and J. Marty, “Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology,” Talanta, vol. 77, pp. 858–862, 2008.
[3.3] C. P. Leo´n, L. Kador, B. Peng, and M. Thelakkat, “Characterization of the Adsorption of Ru-bpy Dyes on Mesoporous TiO2 Films with UV−Vis, Raman, and FTIR Spectroscopies,” J. Phys. Chem. B, vol. 110, pp. 8723–8730, 2006.
[3.4] A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Gra1tzel, “Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations,” J. Phys. Chem. B, vol. 104, pp. 1300–1306, 2000.
[3.5] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1–21, 2000.
[3.6] Z. Tebby, O. Babot, T. Toupance, D.-H. Park, G. Campet, and M.-H. Delville, “Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO2 Films: An Original Route toward Plastic Electrochromic Systems,” Chem. Mater., vol. 20, pp. 7260–7267, 2008.
[3.7] Z. Tebby, O. Babot, D. Michau, L. Hirsch, L. Carlos, and T. Toupance, “A simple route towards low-temperature processing of nanoporous thin films using UV-irradiation: Application for dye solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 205, pp. 70–76, 2009.
[3.8] G. B. Deacon and R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coordination Chemistry Reviews, vol. 33, pp. 227–250, 1980.
[3.9] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol 47, pp. 4213–4225, 2002.
[3.10] G. P. Lopez, D. G. Castner, and B. D. Ratner, “XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups,” Surface and Interface Analysis, vol. 17, pp. 267–272,1991.
[3.11] Y. V. Zubavichus, Y. L. Slovokhotov, Md. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel, and V. Shklover, “Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2 Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study,” Chem. Mater., vol. 14, pp. 3556–3563, 2002.
[3.12] X.-P. Wang, Y. Yu, X.-F. Hu, and L. Gao, ”Hydrophilicity of TiO2 films prepared by liquid phase deposition,” Thin Solid Films, vol. 371, pp. 148–152, 2000.
[3.13] T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka,” Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 187–191, 2004.
[3.14] K. Guan, “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface & Coatings Technology, vol. 191, pp. 155–160, 2005.
[3.15] D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, and J. A. Ayllon, “New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 175, pp. 165–171, 2005.
[3.16] Z. S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, “Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films,” Langmuir, vol. 21, pp. 4272–4276, 2005.
[3.17] O. Ishitani, C. Inoue, Y. Suzuki, and T. Ibusuki, “Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 72, pp. 269–271, 1993.
[3.18] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, vol. 516, pp. 4613–4619, 2008.
[A.1] P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” principle,” Nature, vol. 244, pp. 281–282, 1973.
[A.2] D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Applied Optics, vol. 32, pp. 1154–1167, 1993.
[A.3] B. S. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am., vol. 65, pp. 267–270, 1975.
[A.4] S. J. Wilsona; M. C. Hutleya, “The Optical Properties of 'Moth Eye' Antireflection Surfaces,” Journal of Modern Optics, vol. 29, pp.993–1009, 1982.
[A.5] C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Applied Physics Letters, vol. 92, pp. 061112, 2008.
[A.6] W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A, vol. 8, pp. 549–553, 1991.
[A.7] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Optics Letters, vol. 24, pp. 1422–1424, 1999.
[A.8] Y. Chen, D. M. Baghall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys., vol. 84, no. 19, pp. 3912–3914, 1998.
[A.9] A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma, “Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser,” Mater. Sci. Eng. B, vol. 56, no. 2-3, pp. 263–266, 1998.
[A.10] H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y.Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-Temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001.
[A.11] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2011–2013, 2000.
[A.12] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vaporphase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, no. 22, pp. 4232–4234, 2002.
[A.13] M. K. Lee, C. L. Ho, C. C. Lin, N. R. Cheng, M. H. Houng, Y. K. Chien, and C. F. Yen, “Light Extraction Efficiency Enhancement of GaN Blue LED with ZnO Nanotips Prepared by Aqueous Solution Deposition,” Journal of the Electrochemical Society, vol. 158, no. 5, pp. D286–D289, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.195.118
論文開放下載的時間是 校外不公開

Your IP address is 13.59.195.118
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code