Responsive image
博碩士論文 etd-0727111-110359 詳細資訊
Title page for etd-0727111-110359
論文名稱
Title
孤立束核中simvastatin透過活化內皮性一氧化氮合成酶以調控血壓之分子機制探討
Molecular mechanisms of simvastatin enhance eNOS signaling pathway in the nucleus tractus solitarii to regulate blood pressure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-08
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
statins、孤立束核、一氧化氮、氧化壓力、isoprenylation、高血壓
nucleus tractus solitarii, nitric oxide, hypertension, oxidative stress, statins, isoprenylation
統計
Statistics
本論文已被瀏覽 5647 次,被下載 0
The thesis/dissertation has been browsed 5647 times, has been downloaded 0 times.
中文摘要
Statins為HMG-CoA reductase 的抑制劑,普遍用來治療降低膽固醇之藥物,statins除了有降膽固醇的效果,還具有多效作用性質,包括血管保護作用、改善內皮功能、提升一氧化氮的生成、抗氧化特性。其中statins對於內皮功能與氧化壓力的改善可能對於治療高血壓有著密切關係,然而statins對於血壓調控的機制仍尚未釐清。在本實驗室先前的研究也證實了胰島素在孤立束核的心臟血管調節作用是透過活化磷酰肌醇-3 激酶(PI3K)-蛋白質激酶B(protein kinase B)-一氧化氮合成酶(nitric oxide synthase),產生一氧化氮來調控血壓、心跳。而孤立束核在中樞神經系統中扮演著重要中樞心臟血管調控的角色,不僅接收來自周邊感壓接受器傳來的訊息以進行整合,而孤立束核本身也會受到其他物質的調控。Statins經由調控膽固醇合成中重要的中間產物isoprenoid生成,其中Ras和Rac1 GTPase蛋白質為轉譯後修飾isoprenylation的重要受質,其中statins可抑制Rac1的isoprenylation可降低NADPH氧化酶活性進而減低內皮細胞中的氧化壓力和過氧化物的生成。因此本實驗探討simvastatin在中樞藉由哪些訊息傳遞路徑影響重要訊息傳遞蛋白的表現而調控一氧化氮合成酶的活性進而調控血壓。我們將自發性高血壓大鼠分成二組,分別為控制組(側腦室注射人工腦脊髓液)、實驗組(側腦室注射simvastatin)均持續注射三天,並利用尾動脈壓量測法持續觀察期間的血壓變化,發現在側腦室注射simvastatin持續三天後,造成實驗組有顯著性的血壓下降作用,同時在孤立束核中的一氧化氮產量也有顯著性地增加,此外,我們也觀察到側腦室注射simvastatin能有效降低孤立束核中的氧化壓力並促進Ras GTPase的活化,最後取出腦幹中的孤立束核組織進行西方墨點分析法及免疫組織染色等技術來探討訊息傳遞分子之間的關係,我們進一步觀察到simvastatin在孤立束核中可能透過Ras GTPase活化下游ERK1/2、Akt訊息傳遞蛋白及一氧化氮合成酶之活化位磷酸化反應增加,進而增加一氧化氮生成而造成降低血壓反應。綜合以上結果simvastatin於孤立束核中能透過活化一氧化氮合成酶訊息傳遞路徑達到降低血壓的作用。

關鍵詞: statins, 孤立束核, 一氧化氮, 氧化壓力, 中樞心臟血管調控, isoprenylation
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are unequivocally useful for lowering cholesterol levels in patients with dyslipidemias. In addition to cholesterol lowering properties, statins exert a number of pleiotropic, vascular-protective effects include improvement of endothelial function, increased nitric oxide (NO) bioavailability, antioxidant properties. Since endothelial dysfunction and reactive oxygen species (ROS) are important pathophysiological determinants of essential hypertension, these actions of statins raise the possibility that statin therapy may be useful for simultaneously clinical hypertension management. However, the signaling mechanisms of statins that improve hypertension remain unclear. Our previous study showed, in the NTS, insulin may decrease blood pressure and heart rates through PI3K-Akt-eNOS pathway, and NTS integrates convergent information from peripheral baroreceptors and central cardiovascular regulatory center. Statins also prevent the synthesis of other important isoprenoid intermediates of the cholesterol biosynthetic pathway, members of the Ras and Rac1 GTPase family are major substrates for posttranslational modification by isoprenylation and may be important targets for inhibition by statins. Statins could inhibit Rac1 isoprenylation and Rac1-mediated nicotinamide adenine dinucleotide phosphate oxidase activity attenuates reactive oxygen species production. The aim of this study was to investigate the possible signaling pathways involved in simvastatin-mediated blood pressure regulation in the nucleus tractus solitarii (NTS). Male 20-week-old spontaneously hypertensive rats (SHR) were divided into two groups: control group and intracerebroventricular injection with simvastatin group for three days. We found that systolic blood pressure measured with tail-cuff method of the simvastatin-treated rats decreased significantly, and the NO level in the NTS was significantly increased. In addition, we observed that simvastatin could lower the ROS level and increase Ras GTPase activity in the NTS. Immunoblotting and immunohistochemistry analysis further showed that simvastatin increased the phosphorylation ratio of ERK1/2, Akt, and endothelial nitric oxide synthase (eNOS) in the NTS. Taken together, these results suggest that eNOS signaling in the NTS may play an important role in simvastatin-induced blood pressure lowering effects.

Keywords: statins, nucleus tractus solitarii, nitric oxide, oxidative stress, central cardiovascular regulatory, isoprenylation
目次 Table of Contents
Chinese Abstract……………………………………………………………I
English Abstract…………………………………………………………..III
Abbreviation………………………………………………………………V
Contents…………………………………………………………………VII
1. Introduction…………………………..…………………….…………1
1.1 The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase inhibitors……………………………………………...1
1.2 Inhibition of HMG-CoA reductase……………………………...1
1.3 Statins lower blood pressure…………………………………….3
1.4 Effects of statins in central nerve system……………………….4
1.5 Regulation of small GTPase…………………………………….5
1.6 Cardiovascular regulation by brainstem nuclei…………………6
1.7 Nitric oxide signaling in central cardiovascular regulation……..8
1.8 Endotheliual NOS (eNOS) and cardiovascular regulation……...9
1.9 Statins and eNOS Expression…………………………………..10
1.10 Neuronal NOS (nNOS) and cardiovascular regulation………...10
1.11 Reactive oxygen species (ROS)………………………………..11
2. Specific Aims………………………………………………………...14
3. Materials and Methods……………………………………………….15
3.1 Experimental chemicals………………………………………….15
3.2 Animals…………………………………………………………..15
3.3 Intracerebroventricular injection procedures…………………….16
3.4 Blood pressure measurement…………………………………….17
3.5 Determination of NO in NTS……………………………….……17
3.6 ROS production in the NTS……………………………………...18
3.7 Western blot analysis……………………………………………..18
3.8 Immunohistochemistry analysis………………………………….20
3.9 Ras activation assay………………………………………………22
3.10 Statistical analysis……………………………………………….22
4. Results……………………………………….………………………..24
4.1 Cardiovascular effects of simvastatin by oral administration on SHR…………………………………………………….………..24
4.2 Effects of simvastatin by oral administration on the NO production in the NTS of SHR and SHR + simvastatin group rats…….……..24
4.3 Cardiovascular effects of simvastatin by ICV injection on SHR....25
4.4 Effects of simvastatin by ICV injection on the NO production in the NTS of SHR and SHR + simvastatin group rats…………….……26
4.5 Effects of simvastatin on the eNOSS1177 phosphorylation in the NTS of studied rats…………………………………………….….26
4.6 Effects of simvastatin on the nNOSS1416 phosphorylation in the NTS of studied rats……………………………………….……….27
4.7 Effects of simvastatin on the iNOS protein expression in the NTS of studied rats………………………………………………….……..27
4.8 In situ effects of simvastatin on the eNOS phosphorylation in the NTS of studied rats…………………………………………….….28
4.9 Simvastatin lower blood pressure through Ras activation…….......28
4.10 Effects of simvastatin on the Akt phosphorylation in the NTS of studied rats………………………………………………….……29
4.11 Effects of simvastatin on the ERK1/2 phosphorylation in the NTS of studied rats…………………………………….………………29
4.12 Effects of ICV simvastatin on ROS production in the NTS of SHR and SHR + simvastatin group rats…………………………….…30
4.13 Simvastatin decreased ROS production through Rac1 inhibition.30
5. Discussion……………………………………………………………..32
6. Conclusion………………………………………………………….…37
7. Future Perspectives…………………………………………………....38
8. References………………………………………………………….….39
9. Figures and Figure Legends……………………………………….…..47
參考文獻 References
Barraco, R.A., Ergene, E., Dunbar, J.C., and el-Ridi, M.R. (1990). Cardiorespiratory response patterns elicited by microinjections of neuropeptide Y in the nucleus tractus solitarius. Brain Res Bull 24, 465-485.

Bautista, L.E. (2009). Blood pressure-lowering effects of statins: who benefits? J Hypertens 27, 1478-1484.

Bendall, J.K., Rinze, R., Adlam, D., Tatham, A.L., de Bono, J., Wilson, N., Volpi, E., and Channon, K.M. (2007). Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res 100, 1016-1025.

Bredt, D.S., and Snyder, S.H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87, 682-685.

Briones, A.M., Rodriguez-Criado, N., Hernanz, R., Garcia-Redondo, A.B., Rodrigues-Diez, R.R., Alonso, M.J., Egido, J., Ruiz-Ortega, M., and Salaices, M. (2009). Atorvastatin Prevents Angiotensin II-Induced Vascular Remodeling and Oxidative Stress. Hypertension 54, 142-149.

Burridge, K., and Wennerberg, K. (2004). Rho and Rac take center stage. Cell 116, 167-179.

Chan, S.H., Hsu, K.S., Huang, C.C., Wang, L.L., Ou, C.C., and Chan, J.Y. (2005). NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res 97, 772-780.

Coutant, K.D., Wolff-Winiski, B., and Ryder, N.S. (1998). Fluvastatin enhances receptor-stimulated intracellular Ca2+ release in human keratinocytes. Biochem Biophys Res Commun 245, 307-312.

Danesh, F.R., and Kanwar, Y.S. (2004). Modulatory effects of HMG-CoA reductase inhibitors in diabetic microangiopathy. FASEB J 18, 805-815.

Dimmeler, S. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108, 391-397.

Dimmeler, S., Aicher, A., Vasa, M., Mildner-Rihm, C., Adler, K., Tiemann, M., Rutten, H., Fichtlscherer, S., Martin, H., and Zeiher, A.M. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108, 391-397.

Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M. (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23, 599-622.

Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M. (2003). Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1-8.

Gao, L., Wang, W., Li, Y.L., Schultz, H.D., Liu, D., Cornish, K.G., and Zucker, I.H. (2005). Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 112, 1763-1770.

Gao, L., Wang, W., and Zucker, I.H. (2008). Simvastatin Inhibits Central Sympathetic Outflow in Heart Failure by a Nitric-Oxide Synthase Mechanism. J Pharmacol Exp Ther 326, 278-285.

Ghosh-Choudhury, N., Mandal, C.C., and Choudhury, G.G. (2006). Statin-induced Ras Activation Integrates the Phosphatidylinositol 3-Kinase Signal to Akt and MAPK for Bone Morphogenetic Protein-2 Expression in Osteoblast Differentiation. J Biol Chem 282, 4983-4993.

Goldstein, J.L., and Brown, M.S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-430.

Golomb, B.A., Dimsdale, J.E., White, H.L., Ritchie, J.B., and Criqui, M.H. (2008). Reduction in blood pressure with statins: results from the UCSD Statin Study, a randomized trial. Arch Intern Med 168, 721-727.

Guyton, A.C., Cowley, A.W., Jr., Coleman, T.G., DeClue, J.W., Norman, R.A., and Manning, R.D. (1974). Hypertension: a disease of abnormal circulatory control. Chest 65, 328-338.

Haklai, R., Weisz, M.G., Elad, G., Paz, A., Marciano, D., Egozi, Y., Ben-Baruch, G., and Kloog, Y. (1998). Dislodgment and accelerated degradation of Ras. Biochemistry 37, 1306-1314.

Heinke, S., Schwarz, G., Figulla, H.R., and Heinemann, S.H. (2004). The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells. BMC Cardiovasc Disord 4, 4.

Hernandez-Perera, O., Perez-Sala, D., Soria, E., and Lamas, S. (2000). Involvement of Rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res 87, 616-622.

Hirooka, Y., Sakai, K., Kishi, T., Ito, K., Shimokawa, H., and Takeshita, A. (2003). Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 26, 325-331.

Ho, W.Y., Lu, P.J., Hsiao, M., Hwang, H.R., Tseng, Y.C., Yen, M.H., and Tseng, C.J. (2008). Adenosine Modulates Cardiovascular Functions Through Activation of Extracellular Signal-Regulated Kinases 1 and 2 and Endothelial Nitric Oxide Synthase in the Nucleus Tractus Solitarii of Rats. Circulation 117, 773-780.

Huang, H.N., Lu, P.J., Lo, W.C., Lin, C.H., Hsiao, M., and Tseng, C.J. (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation 110, 2476-2483.

Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987a). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84, 9265-9269.

Ignarro, L.J., Byrns, R.E., Buga, G.M., and Wood, K.S. (1987b). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61, 866-879.

Kantzides, A., and Badoer, E. (2005). nNOS-containing neurons in the hypothalamus and medulla project to the RVLM. Brain Res 1037, 25-34.

Kloog, Y., and Cox, A.D. (2000). RAS inhibitors: potential for cancer therapeutics. Mol Med Today 6, 398-402.

Koh, K., Quon, M., and Waclawiw, M. (2008). Are statins effective for simultaneously treating dyslipidemias and hypertension? Atherosclerosis 196, 1-8.

Kopp, U.C., and Buckley-Bleiler, R.L. (1989). Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension 14, 445-452.

Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4, 181-189.

Laufs, U., Endres, M., Stagliano, N., Amin-Hanjani, S., Chui, D.S., Yang, S.X., Simoncini, T., Yamada, M., Rabkin, E., Allen, P.G., et al. (2000). Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest 106, 15-24.

Laufs, U., La Fata, V., Plutzky, J., and Liao, J.K. (1998). Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97, 1129-1135.

Laufs, U., and Liao, J.K. (1998). Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273, 24266-24271.

Leslie, R.A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int, 191-212.

Liantonio, A., Giannuzzi, V., Cippone, V., Camerino, G.M., Pierno, S., and Camerino, D.C. (2007). Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2+-release system. J Pharmacol Exp Ther 321, 626-634.

Liao, J.K. (2002). Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110, 285-288.

Lin, L.H., Taktakishvili, O., and Talman, W.T. (2007). Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 1171, 42-51.

Lin, L.H., and Talman, W.T. (2005). Soluble guanylate cyclase and neuronal nitric oxide synthase colocalize in rat nucleus tractus solitarii. J Chem Neuroanat 29, 127-136.

Lo, W.C., Jan, C.R., Chiang, H.T., and Tseng, C.J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension 35, 1253-1257.

Mangat, S., Agarwal, S., and Rosendorff, C. (2007). Do statins lower blood pressure? J Cardiovasc Pharmacol Ther 12, 112-123.

McTaggart, S.J. (2005). Isoprenylated proteins. Cellular and Molecular Life Sciences 63, 255-267.

Menetrey, D., and Basbaum, A.I. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255, 439-450.

Morbidelli, L., Donnini, S., and Ziche, M. (2003). Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des 9, 521-530.

Morishita (2009). Fluvastatin improves osteoporosis in fructose-fed insulin resistant model rats through blockade of the classical mevalonate pathway and antioxidant action. International Journal of Molecular Medicine 23.

Mosqueda-Garcia, R., Tseng, C.J., Appalsamy, M., and Robertson, D. (1990). Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. J Pharmacol Exp Ther 255, 374-381.

Paton, J.F., Deuchars, J., Ahmad, Z., Wong, L.F., Murphy, D., and Kasparov, S. (2001). Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 531, 445-458.

Pliquett, R.U., Cornish, K.G., Peuler, J.D., and Zucker, I.H. (2003). Simvastatin normalizes autonomic neural control in experimental heart failure. Circulation 107, 2493-2498.

Qadri, F., Carretero, O.A., and Scicli, A.G. (1999). Centrally produced neuronal nitric oxide in the control of baroreceptor reflex sensitivity and blood pressure in normotensive and spontaneously hypertensive rats. Jpn J Pharmacol 81, 279-285.

Rees, D.D., Palmer, R.M., Schulz, R., Hodson, H.F., and Moncada, S. (1990). Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101, 746-752.

Reis, D.J. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70, III31-45.

Rikitake, Y. (2005). Rho GTPases, Statins, and Nitric Oxide. Circ Res 97, 1232-1235.

Rodriguez-Viciana, P., Warne, P.H., Vanhaesebroeck, B., Waterfield, M.D., and Downward, J. (1996). Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15, 2442-2451.

Sakai, K., Hirooka, Y., Matsuo, I., Eshima, K., Shigematsu, H., Shimokawa, H., and Takeshita, A. (2000). Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36, 1023-1028.

Sato, A., and Schmidt, R.F. (1973). Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53, 916-947.

Sjolander, A., Yamamoto, K., Huber, B.E., and Lapetina, E.G. (1991). Association of p21ras with phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 88, 7908-7912.

Strazzullo, P., Kerry, S.M., Barbato, A., Versiero, M., D'Elia, L., and Cappuccio, F.P. (2007). Do Statins Reduce Blood Pressure?: A Meta-Analysis of Randomized, Controlled Trials. Hypertension 49, 792-798.

Suh, J.-W., Choi, D.-J., Chang, H.-J., Cho, Y.-S., Youn, T.-J., Chae, I.-H., Kim, K.-I., Kim, C.-H., Kim, H.-s., Oh, B.-H., et al. (2010). HMG-CoA Reductase Inhibitor Improves Endothelial Dysfunction in Spontaneous Hypertensive Rats Via Down-regulation of Caveolin-1 and Activation of Endothelial Nitric Oxide Synthase. J Korean Med Sci 25, 16.

Tai, M.H., Hsiao, M., Chan, J.Y., Lo, W.C., Wang, F.S., Liu, G.S., Howng, S.L., and Tseng, C.J. (2004). Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens 17, 63-70.

Thelen, K.M. (2005). Brain Cholesterol Synthesis in Mice Is Affected by High Dose of Simvastatin but Not of Pravastatin. J Pharmacol Exp Ther 316, 1146-1152.

Tseng, C.J., Appalsamy, M., Robertson, D., and Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 265, 1511-1518.

Tseng, C.J., Biaggioni, I., Appalsamy, M., and Robertson, D. (1988). Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11, 191-197.

Tseng, C.J., Chou, L.L., Ger, L.P., and Tung, C.S. (1994). Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. J Pharmacol Exp Ther 268, 558-564.

Tseng, C.J., Liu, H.Y., Lin, H.C., Ger, L.P., Tung, C.S., and Yen, M.H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27, 36-42.

Van Aelst, L., and D'Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev 11, 2295-2322.

Vincent, S.R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755-784.

Waki, H., Kasparov, S., Wong, L.F., Murphy, D., Shimizu, T., and Paton, J.F. (2003). Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol 546, 233-242.

Waki, H., Murphy, D., Yao, S.T., Kasparov, S., and Paton, J.F. (2006). Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 48, 644-650.

Wang, W., Brandle, M., and Zucker, I.H. (1993). Acute alcohol administration stimulates baroreceptor discharge in the dog. Hypertension 21, 687-694.

Zhang, Y., Croft, K.D., Mori, T.A., Schyvens, C.G., McKenzie, K.U., and Whitworth, J.A. (2004). The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am J Hypertens 17, 260-265.

Zhou, Q., and Liao, J.K. (2010). Pleiotropic Effects of Statins. Circulation Journal 74, 818-826.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.57.131
論文開放下載的時間是 校外不公開

Your IP address is 13.58.57.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code