Responsive image
博碩士論文 etd-0727111-182229 詳細資訊
Title page for etd-0727111-182229
論文名稱
Title
利用鉻金屬催化製備含硼奈米碳管
Synthesis of Boron-Doped Carbon Nanotubes on Chromium Catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-07-27
關鍵字
Keywords
含硼奈米碳管、銅金屬、化學氣相沉積法、鉻金屬
VLS
統計
Statistics
本論文已被瀏覽 5637 次,被下載 42
The thesis/dissertation has been browsed 5637 times, has been downloaded 42 times.
中文摘要
摘要
本篇論文主要以 Cr(NO3)3•9H2O / H2SO4 / γ- Al2O3 當作催化劑生長含硼奈米碳管,並探討其生長的情形。有硼原子參雜的奈米碳管,會改變碳管的特性,像是電性、儲氫能力等;可以提高奈米碳管的應用性。本實驗中將利用裂解三異丙基硼酸 ( Triisopropyl Borate ) 以化學氣相沉積法在鉻金屬催化劑上生長含硼奈米碳管。
目前比較被大家所接受的奈米碳管的生長機制為 VLS ( Vapor-Liquid-Solid ) 。這機制認為碳源裂解成碳原子後必須溶解在液化的金屬中,當溶解量達到飽和,碳原子會隨著濃度梯度析出在金屬表面進而生長出奈米碳管。因此生長碳管的催化金屬大多數以溶碳度較高的金屬為主,常見的有鐵、鈷、鎳或是這些金屬的合金。本實驗室提出了一個新的生長模型,認為只要在特定的曲面上有好的活性位置提供碳原子沉積在上面,在適當的溫度下碳就能夠堆積在曲面上生長出奈米碳管。我們已成功的利用低溶碳度的銅以及鉻金屬當作觸媒生長出奈米碳管,可以知道 VLS 並非為生長奈米碳管的唯一機制。

關鍵詞:鉻金屬、銅金屬、含硼奈米碳管、化學氣相沉積法、VLS
Abstract
none
目次 Table of Contents
目錄
頁數
論文審定書 I
誌謝 II
摘要 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1.前言 1
1-2.奈米碳管的結構 2
1-3.奈米碳管的製備方法 3
1-3-1.電弧放電法 ( Arc Discharge ) 4
1-3-2.雷射剝除法 ( Laser Ablation ) 5
1-3-3.化學氣相沉積法 ( Chemical Vapor Deposition ) 6
1-4.化學氣相沉積法 ( CVD ) 法製造奈米碳管的生長機制 7
1-5.含硼奈米碳管的製備與特性 9
1-6.含硼奈米碳管的應用 10
1-6-1.導電材料 10
1-6-2.儲氫材料 11
1-6-3.光電壓元件 13
1-7.本文研究動機 14
第二章 實驗方法 19
2-1.實驗樣品 19
2-1-1.實驗用氣體 19
2-1-2.實驗用藥品 19
2-2.實驗步驟 20
2-3.實驗裝置 20
2-4.分析方法 21
2-4-1.穿透式電子顯微鏡分析 ( TEM,Transmission Electron Microscope ) 21
2-4-2.X光繞射分析 ( XRD,X-ray Powder Diffractomter ) 22
2-4-3.掃描式電子顯微鏡分析 ( SEM,Scanning Electron Microscope ) 23
2-4-4.熱重損失分析 ( TGA,Thermogravimetric Analyzer ) 23
2-4-5.拉曼光譜儀分析 ( Raman Spectrometer ) 24
2-4-6.核磁共振光譜儀分析 ( NMR,Nuclear Magnetic Resonance ) 24
第三章 結果與討論 25
3-1.金屬催化劑的結構分析 25
3-2.以銅金屬催化劑生長含硼奈米碳管 25
3-2-1.熱重損失分析 26
3-2-2.掃描式電子顯微鏡分析 27
3-2-3.穿透式電子顯微鏡分析 29
3-3.以鉻金屬催化劑生長含硼奈米碳管 32
3-3-1.載流氣體的選擇 32
3-3-2.載流氣體中氫氣與氦氣比例的影響 35
3-3-2-1.氦氣比氫氣為 8:2 35
3-3-2-2.氦氣比氫氣為 9:1 36
3-3-2-2-1.固定碳源三異丙基硼酸注入總量為 0.1 ml 36
3-3-2-2-1-1.熱重損失分析 36
3-3-2-2-1-2.掃描式電子顯微鏡分析 38
3-3-2-2-2.固定碳源三異丙基硼酸注入總量為 0.15 ml 39
3-3-2-2-2-1.熱重損失分析 39
3-3-2-2-2-2.掃描式電子顯微鏡分析 40
3-3-2-2-3.固定碳源三異丙基硼酸注入總量為 0.2 ml 42
3-3-2-2-3-1.熱重損失分析 42
3-3-2-2-3-2.掃描式電子顯微鏡分析 43
3-3-2-2-4.高溫對催化劑的影響 46
3-3-2-2-4-1.掃描式電子顯微鏡分析 46
3-3-2-2-4-2.熱重損失分析 47
3-3-2-3.氦氣比氫氣為 9.5:0.5 49
3-3-2-3-1.熱重損失分析 50
3-3-2-3-2.掃描式電子顯微鏡分析 51
3-3-3.拉曼光譜分析 52
3-3-4.核磁共振光譜分析 53
3-3-5.穿透式電子顯微鏡分析 56
第四章 結論 58
第五章 參考文獻 59
參考文獻 References
第五章 參考文獻
1. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60 - BUCKMINSTERFULLERENE. Nature 1985, 318 (6042), 162-163.

2. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 1991, 354 (6348), 56-58.

3. (a) Dai, H. J., Carbon nanotubes: Synthesis, integration, and properties. Accounts Chem. Res. 2002, 35 (12), 1035-1044; (b) Mauter, M. S.; Elimelech, M., Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42 (16), 5843-5859.

4. (a) Liu, B. C.; Lyu, S. C.; Lee, T. J.; Choi, S. K.; Eum, S. J.; Yang, C. W.; Park, C. Y.; Lee, C. J., Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem. Phys. Lett. 2003, 373 (5-6), 475-479; (b) Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y., Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6 (12), 2642-2645.

5. (a) Delzeit, L.; Nguyen, C. V.; Chen, B.; Stevens, R.; Cassell, A.; Han, J.; Meyyappan, M., Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 2002, 106 (22), 5629-5635; (b) Lima, M. D.; Bonadiman, R.; de Andrade, M. J.; Toniolo, J.; Bergmann, C. P., Synthesis of multi-walled carbon nanotubes by catalytic chemical vapor deposition using Cr2-xFexO3 as catalyst. Diam. Relat. Mat. 2006, 15 (10), 1708-1713.

6. Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391 (6662), 62-64.

7. Cui, S.; Scharff, P.; Siegmund, C.; Schneider, D.; Risch, K.; Klotzer, S.; Spiess, L.; Romanus, H.; Schawohl, J., Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N-2 atmosphere. Carbon 2004, 42 (5-6), 931-939.
8. (a) See, C. H.; Harris, A. T., A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 2007, 46 (4), 997-1012; (b) Wirth, C. T.; Zhang, C.; Zhong, G. F.; Hofmann, S.; Robertson, J., Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests. ACS Nano 2009, 3 (11), 3560-3566.

9. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; delaChapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388 (6644), 756-758.

10. Lai, H. J.; Lin, M. C. C.; Yang, M. H.; Li, A. K., Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2001, 16 (1-2), 23-26.

11. Yakobson, B. I.; Smalley, R. E., Fullerene nanotubes: C-1000000 and beyond. Am. Scientist 1997, 85 (4), 324-337.

12. Zhan, S.; Tian, Y.; Cui, Y.; Wu, H.; Wang, Y.; Ye, S.; Chen, Y., Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane. China Part. 2007, 5 (3), 213-219.

13. Abbaslou, R. M. M.; Soltan, J.; Dalai, A. K., The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method. Appl. Catal. A-Gen. 2010, 372 (2), 147-152.

14. Mattevi, C.; Wirth, C. T.; Hofmann, S.; Blume, R.; Cantoro, M.; Ducati, C.; Cepek, C.; Knop-Gericke, A.; Milne, S.; Castellarin-Cudia, C.; Dolafi, S.; Goldoni, A.; Schloegl, R.; Robertson, J., In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J. Phys. Chem. C 2008, 112 (32), 12207-12213.

15. (a) Rodriguez-Manzo, J. A.; Terrones, M.; Terrones, H.; Kroto, H. W.; Sun, L. T.; Banhart, F., In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat Nanotechnol 2007, 2 (5), 307-311; (b) Kumar, M.; Ando, Y., Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10 (6), 3739-3758.

16. Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid. Appl. Phys. Lett. 2008, 92 (20).

17. Bandow, S.; Numao, S.; Iijima, S., Variable-range hopping conduction in the assembly of boron-doped multiwalled carbon nanotubes. J. Phys. Chem. C 2007, 111 (32), 11763-11766.

18. Watanabe, T.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Microwave plasma chemical vapor deposition synthesis of boron-doped carbon nanotube. Physica C 2010, 470, S608-S609.

19. Murata, N.; Haruyama, J.; Reppert, J.; Rao, A. M.; Koretsune, T.; Saito, S.; Matsudaira, M.; Yagi, Y., Superconductivity in thin films of boron-doped carbon nanotubes. Phys. Rev. Lett. 2008, 101 (2).

20. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379.

21. Sankaran, M.; Viswanathan, B., Nitrogen-containing carbon nanotubes as a possible hydrogen storage medium. Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 2008, 47 (6), 808-814.

22. Sankaran, M.; Viswanathan, B., Hydrogen storage in boron substituted carbon nanotubes. Carbon 2007, 45 (8), 1628-1635.

23. Saini, V.; Li, Z. R.; Bourdo, S.; Kunets, V. P.; Trigwell, S.; Couraud, A.; Rioux, J.; Boyer, C.; Nteziyaremye, V.; Dervishi, E.; Biris, A. R.; Salamo, G. J.; Viswanathan, T.; Biris, A. S., Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions. J. Appl. Phys. 2011, 109 (1).

24. Deck, C. P.; Vecchio, K., Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 2006, 44 (2), 267-275.

25. (a) Ding, F.; Bolton, K.; Rosen, A., Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth. J. Vac. Sci. Technol. A 2004, 22 (4), 1471-1476; (b) Zhang, H.; et al., The Mossbauer spectra of carbon nanotubes synthesize using ferrite catalyst. Journal of Physics: Conference Series 2009, 188 (1), 012041.

26. (a) Trepanier, M.; Dalai, A. K.; Abatzoglou, N., Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer-Tropsch reactions. Appl. Catal. A-Gen. 2010, 374 (1-2), 79-86; (b) Tavasoli, A.; Sadagiani, K.; Khorashe, F.; Seifkordi, A. A.; Rohaniab, A. A.; Nakhaeipour, A., Cobalt supported on carbon nanotubes - A promising novel Fischer-Tropsch synthesis catalyst. Fuel Process. Technol. 2008, 89 (5), 491-498.

27. (a) Liu, H. P.; Cheng, G.; Zheng, R. T.; Zhao, Y.; Liang, C. L., Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes. J. Mol. Catal. A-Chem. 2005, 230 (1-2), 17-22; (b) Zhang, Q.; Liu, Y.; Hu, L.; Qian, W. Z.; Luo, G. H.; Wei, F., Synthesis of thin-walled carbon nanotubes from methane by changing the Ni/Mo ratio in a Ni/Mo/MgO catalyst. New Carbon Mater. 2008, 23 (4), 319-325.

28. Lin, J. H.; Chen, C. S.; Ma, H. L.; Hsu, C. Y.; Chen, H. W., Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 2007, 45 (1), 223-225.

29. Yang, T. S.; Chang, T. H.; Yeh, C. T., Influence of precursors on the sulfated alumina superacid: Support and impregnating solution effect. J. Mol. Catal. A-Chem. 1997, 123 (2-3), 163-169.

30. Olah, G. A., 100 years of carbocations and their significance in chemistry. J. Org. Chem. 2001, 66 (18), 5943-5957.

31. Kaufman, L.; Nesor, H., COUPLED PHASE-DIAGRAMS AND THERMOCHEMICAL DATA FOR TRANSITION-METAL BINARY-SYSTEMS .4. Calphad-Comput. Coupling Ph. Diagrams Thermochem. 1978, 2 (4), 295-318.

32. Chen, H. W.; Lin, J. H., CO HYDROGENATION ON Cr2O3-PROMOTED COPPER-CATALYSTS. J. Phys. Chem. 1992, 96 (25), 10353-10358.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code