Responsive image
博碩士論文 etd-0727112-081448 詳細資訊
Title page for etd-0727112-081448
論文名稱
Title
壓電薄膜換能器應用於振動能量擷取之研究
Study of thin-film piezoelectric transducers for vibration-energy harvesting
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-17
繳交日期
Date of Submission
2012-07-27
關鍵字
Keywords
振動能量、可撓性基板、氧化鋅、氮化鋁、壓電換能器
AlN, piezoelectric transducer, vibration-energy, flexible substrate, ZnO
統計
Statistics
本論文已被瀏覽 5747 次,被下載 0
The thesis/dissertation has been browsed 5747 times, has been downloaded 0 times.
中文摘要
本論文之研究目的在於研製可應用於擷取振動能量之壓電薄膜換能器。本論文所採用的壓電薄膜換能器,其結構為由上下電極薄膜中間結合壓電薄膜層的三明治結構。為了開發一個可操作於低頻環境以及具長效性之壓電薄膜換能器,本文詳細介紹了可撓性基板的選擇及壓電層之製作方法,並且針對可撓性基板的彈性係數、c軸優選氧化鋅薄膜、c軸優選氮化鋁薄膜及附載質量效應,進行探討與分析。
對於壓電薄膜換能器的結構設計方面,本論文採用三種結構組合,分別為PET基板建構成的單層式換能器(Cu/ZnO/ITO/PET)、不鏽鋼基板建構成的單層式換能器(Cu/ZnO/SUS304 and Cu/AlN/SUS304)與不鏽鋼基板建構成的雙面式換能器(Cu/ZnO/SUS304/Ti/Pt/ZnO/Cu and Cu/AlN/Pt/Ti/SUS304/Ti/Pt/AlN/Cu),詳細探究可撓性基板之選擇與c軸優選壓電薄膜對於電性輸出之影響。本研究研製的PET單層式氧化鋅換能器,經由輸入100 Hz的振動頻率後,並經由整流濾波電路,匹配負載電阻為5 MΩ時,可獲得最大發電功率為0.07 μW/cm2。
本研究研製的不鏽鋼單層式換能器,經由輸入80 Hz的振動頻率後,並經由整流濾波電路,匹配負載電阻後,不鏽鋼單層式氧化鋅換能器可獲得最大發電功率為1.0 μW/cm2。
為建構雙面式壓電換能器,本研究採用白金薄膜作為附著層以利於成長第二面的c軸優選壓電薄膜,並利用其耐高溫之特性以降低不鏽鋼基材之氧化現象。本研究研製的不鏽鋼雙面式換能器,經由輸入80 Hz的振動頻率後,並經由整流濾波電路,匹配負載電阻後,不鏽鋼雙面式氧化鋅換能器可獲得最大發電功率為1.3 μW/cm2;不鏽鋼雙面式氮化鋁換能器可獲得最大發電功率為1.462 μW/cm2。
Abstract
The piezoelectric transducer for vibration-energy harvesting is constructed of a piezoelectric layer, bottom electrode and a top electrode. In order to obtain an appropriate transducer for the low-frequency operating; environmentally-friendly and long-term, the flexible substrate, the piezoelectric layer, and the additional mass-loading (tip mass) have been investigated thoroughly. This study investigates the feasibility of a high-performance ZnO and AlN based piezoelectric transducer for vibration-energy harvesting applications.
Firstly, the piezoelectric transducer is constructed of a Cu/ZnO/ITO/PET structure. Both scanning electron microscopy and X-ray diffraction indicate that, among the favorable characteristic of the ZnO piezoelectric film include a rigid surface structure and a high c-axis preferred orientation. Hence, an open circuit voltage of 1.87 V for the ZnO piezoelectric transducer at a vibration frequency of 100 Hz is obtained by an oscilloscope. After rectifying and filtering, the output power of the generator exhibits an available benefit of 0.07 μW/cm2 with the load resistance of 5 MΩ.
Secondly, this investigation introduces novel means of integrating high-performance piezoelectric transducers using single-sided ZnO and AlN films with a flexible stainless steel substrate (SUS304). Hence, the SUS304 substrate exhibits the long-term stability under vibration. The single-sided ZnO and AlN transducers are deposited on the SUS304 substrate at a temperature of 300 oC by an RF magnetron sputtering system. Scanning electron microscopy and X-ray diffraction of piezoelectric films reveal a rigid surface structure and a high c-axis-preferred orientation. A mass loading at the front-end of the cantilever is critical to increase the amplitude of vibration and the power generated by the piezoelectric transducer. The open circuit voltage of the single-sided ZnO power generator is 10.5 V. After rectification and filtering through a capacitor with a capacitance of 33 nF, the output power of the single-sided ZnO generators exhibited a specific power output of 1.0 μW/cm2 with a load resistance of 5 MΩ.
Finally, this investigation fabricates double-sided piezoelectric transducers for harvesting vibration-power. The double-sided piezoelectric transducer is constructed by depositing piezoelectric thin films on both the front and the back sides of SUS304 substrate. The titanium (Ti) and platinum (Pt) layers were deposited using a dual-gun DC sputtering system between the piezoelectric thin film and the back side of the SUS304 substrate. Scanning electron microscopy and X-ray diffraction of piezoelectric films reveal a rigid surface structure and highly c-axis-preferring orientation. The maximum open circuit voltage of the double-sided ZnO power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.3 μW/cm2 is obtained from the double-sided ZnO transducer with a load resistance of 6 MΩ. The variation of the power output of ±0.001% is obtained after 24-hour continuous test. The maximum open circuit voltage of the double-sided AlN power transducer is approximately 20 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.462 μW/cm2 is obtained from the double-sided AlN transducer with a load resistance of 7 MΩ.
目次 Table of Contents
摘要 III
ABSTRACT V
TABLE OF CONTENTS VIII
TABLE OF FIGURE AND TABLE CAPTIONS X
CHAPTER1 INTRODUCTION 14
CHAPTER 2 THEORETICAL ANALYSIS 16
2.1 PIEZOELECTRICITY 16
2.2 MATERIALS CHARACTERISTICS 18
2.2.1 The characteristics of ZnO thin films 18
2.2.2 The characteristics of AlN thin films 18
2.2.3 The characteristics of Ti and Pt 19
2.3 REACTIVE MAGNETRON SPUTTERING TECHNIQUE 20
2.3.1 Sputtering 21
2.3.2 RF Magnetron sputtering 21
2.4 HARVESTER DESIGN AND MODEL 23
Chapter 3 Experimental procedure 29
3.1 THE CLEANING OF SUBSTRATES 29
3.2 SPUTTERING SYSTEM AND THIN FILM DEPOSITION 30
3.2.1 RF magnetron sputtering system 28
3.2.2 DC magnetron sputtering system 28
3.3 ZNO THIN FILMS DEPOSITION ON ITO/PET SUBSTRATES 36
3.4 SINGLE-SIDED THIN-FILM PIEZOELECTRIC TRANSDUCERS ON SUS304 SUBSTRATES 30
3.4.1 Single-sided ZnO-based piezoelectric transducers 30
3.4.2 Single-sided AlN-based piezoelectric transducers 30
3.5 DOUBLE-SIDED THIN-FILM PIEZOELECTRIC TRANSDUCERS ON SUS304 SUBSTRATES 31
3.5.1 Double-sided ZnO-based piezoelectric transducers 31
3.5.2 Double-sided AlN-based piezoelectric transducers 32
3.6 X-RAY DIFFRACTION (XRD) ANALYSIS 33
3.7 SCANNING ELECTRON MICROSCOPY (SEM) ANALYSIS 35
3.8 NANO-INDENTER AND NANO-SCRATCH TESTER ANALYSIS 35
3.9 OUTPUT VOLTAGE AND POWER DENSITY MEASUREMENT 38
3.10 MASS LOADING 38
Chapter 4 Results and discussion 40
4.1 INVESTIGATION OF ZNO/ITO/PET TRANSDUCERS 40
4.1.1 Structural and morphological properties of piezoelectric ZnO thin films 40
4.1.2 Output voltage and power density of generators 40
4.1.3 Analysis of adhesion of ZnO thin films on ITO/PET substrates 42
4.2 INVESTIGATION OF SINGLE-SIDED ZNO BASED TRANSDUCERS 43
4.2.1 Structural and morphological properties of piezoelectric ZnO thin films 43
4.2.2 Analysis of adhesion of ZnO thin films. 45
4.2.3 Electrical properties of single-sided ZnO based transducer 46
4.3 INVESTIGATION OF SINGLE-SIDED ALN BASED TRANSDUCERS 48
4.3.1 Structural and morphological properties of piezoelectric ZnO thin films
4.3.2 Electrical properties of single-sided AlN based transducer 51
4.3.3 Combination of AlN/SUS304 52
4.4 INVESTIGATION OF DOUBLE-SIDED ZNO BASED TRANSDUCERS 54
4.4.1 Physical and electrical properties of double-sided ZnO-based transducers 54
4.4.2 Analysis of modification of back surface of SUS304 substrate 55
4.4.3 Electrical properties of double-sided piezoelectric transducers 56
4.5 INVESTIGATION OF DOUBLE-SIDED ALN BASED TRANSDUCERS 57
4.5.1 Physical and electrical properties of double-sided AlN-based transducers 58
Chapter 5 Conclusion 60
5.1 ZNO/ITO/PET BASED TRANSDUCERS 60
5.2 SINGLE-SIDED ZNO/SUS304 BASED TRANSDUCERS 60
5.3 SINGLE-SIDED ALN/SUS304 BASED TRANSDUCERS 61
5.4 DOUBLE-SIDED ZNO BASED TRANSDUCERS 62
5.5 DOUBLE-SIDED ALN BASED TRANSDUCERS 63
Chapter 6 Future works 60
References 66
參考文獻 References
[1] Celso Penche and European Small Hydropower Association (ESHA), “Guide on how to develop a small hydropower plant,” 2004.
[2] N. Hatziargyriou and A. Zervos, “Wind power development in Europe,” Proceedings of the IEEE, vol. 89, No. 12, pp. 1765-1782, 2001.
[3] L. S. Blunden, A. S. Bahaj, “Tidal energy resource assessment for tidal stream generators,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 221, pp. 137–146, 2007.
[4] B. O'Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-739, 1991.
[5] M.A. Green, K. Emery, D.L. King, Y. Hishikawa, W. Warta, “Solar Cell Efficiency Tables (Version 29),” Progress in Photovoltaics: Research and Applications, vol. 15, pp. 35-40, 2007.
[6] J. Britt, C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett., vol. 62, pp. 2851-2852, 1993.
[7] N.G. Stephen, “On Energy Harvesting from Ambient Vibration,” Journal of Sound and Vibration vol. 293, pp. 409-425, 2006.
[8] E. Bouendeu, A. Greiner, P.J. Smith and J.G. Korvink, “A Low-cost Electromagnetic Generator for Vibration Energy Harvesting,” IEEE Sensors Journal, vol. 11, no.1, pp. 107 – 113, 2011.
[9] C. Williams, R. Woods and R. Yates, “Feasibility study of a vibration powered micro-electric generator,” IEEE Colloquium on Compact Power Sources, (Compact Power Sources (Digest No. 96/107), pp. 7/1-7/3, 1996.
[10] C. Shearwood and R. B. Yates, “Development of an electromagnetic microgenerator,” Electron. Lett., vol. 33, pp. 1883-1884, 1997.
[11] R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal processing using vibration-based power generation,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 687-695, 1998.
[12] W. J. Li, C. H. Ho and M. H. Chan, “Infrared signal transmission by a laser-micromachined vibration-induced power generator”, Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Lansing Mi, Aug 8-11, pp. 236-239, 2000.
[13] P. Glynne-Jones, M. Tudor, S. Beeby and N. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators A: Physical, vol. 110, pp. 344-349, 2004.
[14] T. L. Smith, J. D. Ferry, and F. W. Schremp, “Measurements of the mechanical properties of polymer solutions by electromagnetic transducers,” J. Appl. Phys,vol. 20, pp. 144-153, 1949.
[15] N. White, P. Glynne-Jones and S. Beeby, “A novel thick-film piezoelectric micro-generator,” Smart Mater. Struct, vol. 10, pp. 850-852, 2001.
[16] P. Glynne-Jones, S. Beeby and N. White, “Towards a piezoelectric vibration-powered microgenerator,” IEE Proceedings: Science, Measurement and Technology, vol. 148, pp. 68-72, 2001.
[17] J. Y. Kang, H. J. Kim, J. S. Kim and T. S. Kim, “Optimal design of piezoelectric cantilever for a micro power generator with microbubble,” The 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp.424-427, 2002.
[18] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, Di Chena, B.C. Caia and Yue Liu,“Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectron. J. 37, 1280-1284, 2006.
[19] J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao and B. C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting”, Microelectronics Journal, vol. 39, pp. 802-806, 2008.
[20] S. J. Jeong, M. S. Kim, J. S. Song and H. Lee, “Two-layered piezoelectric bender device for micro-power generator”, Sensors and Actuators A: Physical, vol. 148, pp. 158-167, 2008.
[21] European Union, Waste Electrical and Electronic Equipment (WEEE) Regulations, “EU-Directive 96/EC,” September, 2002.
[22] European Union, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Regulations, “EU-Directive 95/EC,” September, 2002.
[23] A. Kuoni, R. Holzherr. M. Boillat, N.F.D. Rooij, “Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor Journal of Micromechanics and Microengineering”, vol. 13, pp. S103 – S107, 2003.
[24] C. L. Wei, Y. C. Chen, J. L. Fu, K. S. Kao, D. L. Cheng and C. C. Cheng , “UV detection based on a ZnO/LiNbO3 layered surface acoustic wave oscillator circuit”, Journal of Vacuum Science & Technology A, vol. 27, pp.1343-1346, 2009.
[25] R. C. Lin, Y. C. Chen, W. T. Chang, C. C. Cheng, and K. S. Kao , “Highly-Sensitive Mass Sensor using Film Bulk Acoustic Resonator”, Sensors & Actuators: A. Physical, vol. 147, pp. 425-429, 2008.
[26] J. Yoo, J. Lee, S. Kim, K. Yoon, I.J. Park, S.K. Dhungel, B. Karunagaran, D. Mangalaraj, J.Yi , “High transmittance and low resistive ZnO:Al films for thin film solar cells,” Thin Solid Films, vol. 480, pp. 213 – 217, 2005.
[27] P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee and C. C. Cheng , “The Ultraviolet Emission Mechanism of ZnO Thin Film Fabricated by Sol-Gel Technology”, Journal of the European Ceramic Society, vol. 27, pp. 3815-3818, 2007.
[28] P. T. Hsieh, Y. C. Chen, K. S. Kao and C. M. Wang, “Structural and luminescent characteristics of non-stoichiometric ZnO films by various sputtering and annealing temperatures”, Physical B, vol. 403, pp. 178-183, 2008.
[29] P. T. Hsieh, Y. C. Chen, K. S. Kao and C. M. Wang , “Luminescence mechanism of ZnO thin film investigated by XPS measurement” , Appl. Phys. A-Mater., vol. 90, pp. 317-321, 2008.
[30] C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, and P. S. Cheng , “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator”, Thin Solid Films, vol. 518, pp. 3059-3062, 2010.
[31] J. Curie and P. Curie, “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces”, Bull. Soc. Min. France, vol. 3, pp. 90-93, 1880.
[32] R. Aigner, “RF-MEMS filters manufactured on silicon: key facts about bulk-acoustic-wave technology,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, pp. 157-161, 2003.
[33] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Materials research bulletin, vol. 39, pp. 39-46, 2010.
[34] K Tsubouchi, K. Sugai and N. Mikoshiba, “AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3and AlN/Si”, in Proc. 1981 IEEE Ultrason. Symp., pp. 375-380, 1981
[35] H. C. Lee, J. Y. Park, K. H. Lee and J. U. Bu, “Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators”, J. Vac. Sci. Technol. B, Vol. 22(3), pp. 1127-1133, 2004.
[36] J. Jedwab and J. Cassedanne, “Historical observations on oxygen-bearing compounds of platinum and palladium in Minas Gerais, Brazil”, The Canadian Mineralogist, vol. 36, pp.887-893, 1998.
[37] J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN based FBARs,” Thin Solid Films, vol. 447–448, pp. 610-614, 2004.
[38] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films,” Journal of Vacuum Science and Technology, vol.74, pp. 699-703, 2004.
[39] R. Duggirala, H. Li and A. Lal, “An Ultra High Efficiency Piezoelectric Direct Charging Radioisotope Micropower Generator,” Solid-State Sensor, Actuator and Microsystem Workshop, Hilton Head, South Carolina, pp. 137–140, 2004.
[40] H. Kulah, and K. Najafi, “An electromagnetic micro power generator for low frequency environmental vibrations,” IEEE International Micro Electro Me- chanical Systems (MEMS) Conference, Maastricht Netherlands, IEEE, Piscataway, pp. 237 – 240, 2004.
[41] H. A. Sodano, G. Park and D. J. Inman, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting,” Strain, vol. 40, pp. 49–58, 2004.
[42] H. A. Sodano, G. Park, D. J. Leo and D. J. Inman, “Model of piezoelectricpower harvesting beam,” 2003 ASME International Mechanical Engineering Congress, Washington DC., vol. 68, pp. 345–354, 2003.
[43] C. Williams, and R. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators, A: Physical, vol. 52, pp. 8–11, 1996.
[44] C. Williams, R. Woods and R. Yates, “Feasibility study of a vibration powered micro-electric generator,” Proceedings of the IEE Colloquium on Compact Power Sources, London UK, IEE, Stevenage England, pp. 7/1 -7/3, 1996.
[45] M.O. Mansoura, M. H. Arafab and S. M. Megahed, “Resonator with magnetically adjustable natural frequency for vibration energy harvesting,” Sensors and Actuators, A: Physical , Vol.163, pp.297–303, 2010.
[46] C. M. Lin, W. C. Lien, V. V. Felmetsger, M. A. Hopcroft, D. G. Senesky, and A. P. Pisano, “AlN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices,” Appl. Phys. Lett., vol. 97, pp.141907-141909, 2010.
[47] D. T. Phan and G. S. Chung, "Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode," Current Applied Physics, vol. 12, pp.210-213, 2012.
[48] D. H. Cho, D. Y. Kim, B. H. Kim, J. P. Jun, J. S. Park and J. B. Lee, “Properties of AlN films grown by two-step deposition and characteristics of AlN-FBAR devices,” IEEE Ultrasonics Symposium, vol. 3 pp.1702- 1705, 2004.
[49] L. Y. Taha, B. Y. Majlis, and A. Al Ali, “Modelling and Analysis of a Transformer based MEMS Piezoelectric Vibration Type Microgenerator,” IEEE International Conference on Semiconductor Electronics, ICSE pp.294-298, 2006.
[50] C. J. Chung, Y. C. Chen, C. C. Cheng and K. S. Kao, “An improvement of tilted AlN for shear and longitudinal acoustic wave,” Appl. Phys. A, vol. 94 pp. 307-313, 2009.
[51] A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, and J. Schubert, “Hillock formation during electromigration in Cu and Al thin films: three-dimensional grain growth,” Appl. Phys. Lett., vol. 66, pp. 1214-1215, 1995.
[52] W. T. Chang, Y. C. Chen, R.C. Lin, C. C. Cheng, K. S. Kao and Y. C. Huang, “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates,” Current Applied Physics, vol. 11, pp.S333-S338, 2011.
[53] S. Mehraeen, S. Jagannathan and K. A. Corzine, “Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam,” IEEE Trans. on Industrial Electronics, vol. 57, pp.820-830, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.246.193
論文開放下載的時間是 校外不公開

Your IP address is 3.135.246.193
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code