Responsive image
博碩士論文 etd-0727112-165257 詳細資訊
Title page for etd-0727112-165257
論文名稱
Title
以靜電紡絲法製備之聚丙烯腈系活性碳奈米纖維作為電雙層電容器之電極材料
Electro-spun PAN-Based Activated Carbon Nanofibers as Electrode Materials for Electric Double Layer Capacitors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-02
繳交日期
Date of Submission
2012-07-27
關鍵字
Keywords
拉曼光譜、微結構、活性碳奈米纖維、超級電容器、靜電紡絲
Raman spectroscopy, microstructure, activated carbon nanofibers, electrospinning, supercapacitors
統計
Statistics
本論文已被瀏覽 5686 次,被下載 2990
The thesis/dissertation has been browsed 5686 times, has been downloaded 2990 times.
中文摘要
經由靜電紡絲法可製備出纖維直徑均勻性和直線型的奈米纖維,且耗時短,故近年來廣泛被應用於製造碳奈米纖維。而由於碳奈米纖維本身具備孔洞之特性,常常被用來當作電池以及電容器之電極材料。經過活化的活性碳奈米纖維,藉由在纖維表面上形成之微孔結構,使其比表面積可提高至1000 - 3000 m2/g。本實驗即是利用高比表面積之吸附性質,將活性碳奈米纖維作為電雙層電容器之電極材料,提升電容效果。
本實驗將經由靜電紡絲製備之奈米纖維,依照前驅物不同和高分子濃度不同而分成多種奈米纖維,發現在微結構上有所差異,11 wt % PAN系奈米纖維擁有均勻性較佳、纖維直徑分布平均和直線型之微結構,8 wt % PAN系和9 wt % Acrylic系則是呈現彎曲狀之纖維,並且有多處糾纏和團塊的現象產生,顯然高分子濃度會對纖維微結構產生影響,濃度越高,黏度上升,可噴射出品質較好之奈米纖維。纖維直徑上,由於經過高溫不斷的裂解反應,纖維產生收縮,使其從400 nm降至200 nm。經過活化後,纖維表面上可觀察出裂痕和突起顆粒狀,這是因為鉀離子在高溫活化過程中,快速撞擊纖維表面所導致。經由X-ray繞射和Raman光譜分析,本實驗製備之活性碳奈米纖維其d002 = 0.356 nm、ID/IG = 1.83,屬於非結晶性且分子排列無序之材料,其導電性差。氮氣吸脫附結果顯示低吸附量以及低比表面積(8-10 m2/g),而電性測量方面,循環伏安圖呈狹長之圖形,計算之電容值最高僅17 F/g,推測其活性碳奈米纖維其本身之孔洞結構並無吸附之作用,或者是碳結構在經過高溫碳化以及活化後,孔洞結構遭被破壞,導致低比表面積和低電容值之結果。
Abstract
Uniform and aligned nanofibers have been obtained by eletrospinning. Activated carbon nanofibers (ACNFs) have been used as electrode materials for battery and electric double layer due to its porous properties. A high value of surface area can be attained (1000 - 3000 nm) by activation, due to the presence of micropores on the surface of nanofibers.
A series of nanofibers have been prepared using different polymer precursors and concentrations by electrospinning in this study. Morphological study by SEM reveals a uniform and aligned fibrous structure for the PAN-based CNF (11 wt%) and a curved and twisted fibrous structure for the PAN-based CNF (8 wt%) and the acrylic-based CNF (9 wt%). Thus, the microstructure of CNF can be greatly influenced by the concentration of polymer precursor; high quality of nanofibers can be produced with higher polymer concentration and higher viscosity. The diameter of PAN-based nanofibers is gradually decreased from 400 to 200 nm during stabilization, carbonization, and activation, due mainly to the degradation and condensation. Surface of CNF becomes rough after activation due to the etching by potassium ions at high temperatures. Microstructural study by X-ray diffraction and Raman spectroscopy indicates a discernible diffraction peak at d002 = 0.356 nm and the ratio ID/IG = 1.83 of ACNFs, showing an amorphous and disordered structure, and leading to a low conductivity. Adsorption/desorption isotherms obtained from BET measurements under nitrogen atmosphere suggests a relatively small surface area of 8-10 m2/g, indicating that there might be no adsorption on the porous ACNF or the porous structure has been destroyed after carbonization. This leads to a relatively low conductance of 17 Faraday/g measured from the cyclic voltammetry.
目次 Table of Contents
目錄
第一章 緒論.....................1
1.1 前言........................1
1.2 研究動機..................2
第二章 理論基礎與文獻回顧.............3
2.1 電容器介紹與種類...................3
2.1.1 傳統電容器.............................3
2.1.2 超級電容器.............................3
2.1.3 超高電容器電解液的種類..........5
2.1.4 超高電容器電極材料種類..........6
2.2 電雙層的基本概念與結構..........7
2.2.1 電雙層的電性原理....................8
2.2.2 Helmholtz 電雙層模型 ..............9
2.2.3 Stern 電雙層模型.....................9
2.2.4 電雙層結構............................10
2.2.5 孔洞碳材電極之電雙層行為......11
2.3 靜電紡絲法製備奈米PAN系纖維...11
2.4 活性碳奈米纖維的製備與微結構....12
2.4.1 原料...........................................12
2.4.2 穩定化........................................12
2.4.3 碳化...........................................12
2.4.4 活化...........................................13
2.5 以活性碳材為電極製備超級電容器.....15
2.5.1 以活性碳作為電極材料..................15
2.5.2 以金屬氧化物/活性碳之複合材料作為電極....16
第三章 實驗步驟 ....................................21
3.1 實驗流程..................21
3.2 樣品、器具與儀器.....22
3.3 步驟........................22
3.3.1 穩定化.....................22
3.3.2 碳化........................22
3.3.3 活化........................22
3.4 材料與儀器分析............23
第四章 結果與討論.............25
4.1 Acrylic系與PAN系之碳奈米纖維比較.................25
4.1.1 重量產率分析............................................25
4.1.2 微結構分析 .............................................25
4.1.3 高溫裂解反應............................................31
4.2 不同碳化與活化溫度之碳奈米纖維比較 ........34
4.2.1 微結構分析...............................................34
4.2.2 X - Ray繞射分析........................................39
4.2.3 Raman雷射光譜分析..................................39
4.2.4 氮氣吸脫附分析.........................................45
4.2.5 循環伏安測試 ...........................................47
4.3 P 11樣品到A 11之轉變................................52
第五章 結論 ...................................................... 54
第六章 未來展望 ..................................................55
6.1 更佳石墨化之活性碳奈米纖維........................55
6.2 物理化學化 ..............................................55
6.3 活性碳奈米纖維 / 金屬氧化物之複合材料電極...55
參考文獻..............................................................56

參考文獻 References
1. X. B. Zhang, X. G. Zhang, M. H. Chen, Q. W. Li., Acta Phys.⁃Chim. Sin. 26 (12) (2010)
2. R. Kotz, M. Carlen. Electrochimica Acta 45, 2483-2498 (2000)
3. Y. W. Ju, S. H. Park, H. R. Jung, W. J. Lee. Journal of The Electrochemical Society 156 (6) A489-A494 (2009)
4. Q. Guo, X. Zhou, X. Li, H. Hou, Journal of Materials Chemistry 19, 2810–2816 (2009)
5. J. S. Im, S. J. Park, Y. S. Lee, Materials Research Bulletin 44, 1871–1878 (2009)
6. M. Inagakia, H. Konnoa, O. Tanaike, Journal of Power Sources 195, 7880–7903 (2010)
7. C. kim, S. H. Park, W. J. Lee, K. S. Yang, Electrochimica Acta 50, 877-881 (2004)
8. I. S. Chronakis, Journal of materials processing Technology 167, 283-293 (2005)
9. H. Q. Hou, D. H. Reneker, Adv. Mater. 16, 69-73 (2004)
10. C. Kim, S. H. Park, J. L. Cho, D. Y. Lee, T. J. Park, W. J. Lee, K. S. Yang, Journal of Raman Spectroscopy 35, 928-933 (2004)
11. Y. Wang, S. Serrano, J. J. Santiago-Aviles, Synthetic Metals 138, 423-427 (2003)
12. C.H., Hamann, A. Hamnett, W. Vielstich, Electrochemistry, New York (1998)
13. H. D. Young, Physics, Addison-Wesley Publishing Co., New York (1992)
14. V. V. N. Obreja, ”On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review”, Physica E 40, 2596–2605 (2008)
15. D. Li and Y. N. Xia, “Electrospinning of nanofiber”, Advanced Materials 16(14), 1143–1230 (2004)
16. Ko, T. H., P. Chiranairadul, and C. H. Lin, “ The Influence of Continuous Stabilization on the Properties of stabilized Fibers and the Final Activated Carbon Fibers. Part І, ” Polym. Engineering Sci., 31(19), p.1618-1626 (1991)
17. Ko, T. H., P. Chiranairadul, and C. H. Lin, “ The Study of Polyacrylonitrile-based Activated Carbon Fibers for Water Purification : Part І, ” J. Mater. Sci. Lett., 11, p.6-8 (1992)
18. Ko, T. H., P. Chiranairadul, C. K. Lu, and C. H. Lin, “ The Effect of Activation by Carbon Dioxide on the Mechanical Properties and Structure of PAN-based Activated Carbon Fibers, ” Carbon, 30(4), p.647-655 (1992)
19. Ko, T. H., H. Y. Ting, and C. H. Lin, “ Thermal Stabilization of Polyacrylonitrile Fibers, ” J. Appl. Polym. Sci., 35, p.631-640 (1988)
20. F. Rodríguez-Reinoso, and M. Molina-Sabio, “ Activated Carbons from Lignocellulosic Materials by Chemical and/or Physical Activation: An Overview, ” Carbon, 30, p.1111-1118 (1992)
21. I. C. Lewis, “ Chemistry of Carbonization, ” Carbon, 20, p.519-530 (1982)
22. T. Wigmans, Carbon, 27, p.13-22 (1989)
23. O. Kadlec, A. Varhaníková, and A. Zukal, Carbon, 8, p.321 (1970)
24. D. W. Mckee, “ The Copper-Catalyzed Oxidation of Graphite, ” Carbon, 8, p.131-140 (1970)
25. D. W. Mckee, C. L. Spiro and E. J. Lamby, “ The Effects of Boron Additives on the Oxidation Behavior of Carbons, ” Carbon, 22, 507-512, (1984)
26. Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M. S. Dresselhaus, Carbon 42, 2423-2432 (2004)
27. V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Phys. Chem. 114, 10302-10307, (2010)
28. M. Endo, Y. J. Kim, Y. Nishimura, T. Inoue, H. Ohta, M. S. Dresselhaus, Carbon 40, 2613-2626 (2002)
29. Y. J. Kim, Y. A. Kim, T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus, Small 2, 339-345 (2006)
30. Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z. L. Yu, Mater. Lett. 57, 988-991 (2002)
31. J. M. Blackman, J. W. Patrick, A. Arenillas, W. Shi, C. E. Snape, Carbon 44, 1376-1385 (2006)
32. F. Suarez-Garcia, E. Vilaplana-Ortego, M. Kunowsky, M. Kimura, A. Oya, A. Linares-Solano, Int. J. Hydrogen Energ. 34, 9141-9150 (2009)
33. V. Jimenez, P. Sanchez, J. A. Diaz, J. L. Valverde, A. Romero, Chem. Phys. Lett. 485, 152-155 (2010)
34. R. C. Bansal, Active Carbon, New York (1988)
35. T. Wigmans, Carbon, 27, p.13-22 (1989)
36. M. Nawa, T. Nogami, H. Mikawa, J. Electrochem. Soc. 131 (6), 1457 (1984)
37. H. Teng, Y. Chang, C. Hsich, Carbon 39, 1981 (2001)
38. Bin, X. Feng, W. Shi, C. Cunzhong, Z. Caoping, C. Yusheng, Y. Electrochimica Acta 52, 4595-4598 (2007)
39. C. Kim, Y.J. Choa, W.Y. Yun, Y.A. Kim. Solid state communications 142, 20-23 (2007)
40. F. Beguin, E.J. Ra, E. Raymundo-Pinero, Y.H. Lee, Carbon 47, 2984-2992 (2009)
41. Y. Kap Seung, B. Nhu-Ngoc, K. Bo-Hye. Carbon 47, 2528-2555 (2009)
42. J.R. Zhang, et al., J. Electrochem. Soc. 148 (12), A1362, (2001)
43. J.H. Park, et al., Electrochem. Solid State Lett. 5 (2), H7 (2002)
44. Q. Huang, et al., J. Power Sources 164 425 (2007)
45. T. Morishita, Y. Soneda, T. Tsumura, M. Inagaki, Carbon, 44 2360 (2006)
46. Donnet, Jean-Baptiste. Carbon fibers. 1988
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code