Responsive image
博碩士論文 etd-0727113-115842 詳細資訊
Title page for etd-0727113-115842
論文名稱
Title
微型質子交換膜燃料電池模態分析之有限元素法模擬
Simulation of Modal Analysis of Micro Proton Exchange Membrane Fuel Cell by Finite Element Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
自然頻率、拘束邊界條件、材料參數變異、燃料電池堆、質子交換膜燃料電池
material parameter variation, natural frequency, proton-exchange membrane fuel cell (PEMFC), boundary condition, fuel cell stack
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1441
The thesis/dissertation has been browsed 5689 times, has been downloaded 1441 times.
中文摘要
外力振動產生的振源頻率接近物體的自然頻率時,則該物體會產生共振而造成結構損壞;本研究的目的即為找出微型質子交換膜燃料電池的自然頻率,確立出燃料電池可接受的振源頻率。本研究使用套裝軟體ANSYS/Workbench進行微型質子交換膜燃料電池3-D有限元素法模擬,進行燃料電池的振動問題研究;並且以頻譜分析儀和衝擊錘作接觸式自然頻率量測實驗,以驗證有限元素模擬可靠度。
本研究主要分三部分來討論,第一部分,討論三種不同拘束方式對燃料電池自然頻率與模態之影響,發現三種拘束方式之第一頻率與自由無拘束相比,下降約60%,第二頻率下降約67%。第二部分是對燃料電池各元件之楊氏係數和密度變異之影響作探討,模擬結果顯示當外層端板之楊氏係數與密度分別發生±15%之變異時,各自然頻率分別會有±5~7%與∓4~6%之變化,其餘元件之楊氏係數與密度變異影響極小。最後一部分為分析3-D燃料電池堆模型,發現在無拘束條件下,兩層以上的燃料電池堆其自然頻率隨層數增加而遞減。
Abstract
Objects resonate and cause structural damage when the frequencies of forced vibrations are similar to the natural frequency of the object. Therefore, the purpose of this study was to identify the natural frequency of micro-proton-exchange membrane fuel cells (micro PEMFCs) to establish an acceptable vibration source frequency in fuel cells. In this study, ANSYS Workbench software was used for simulating micro PEMFCs, using the 3D finite-element method, to examine vibrations in fuel cells. A spectrum analyzer and impulse hammer were used to verify the reliability of the natural frequency measurements in the finite-element simulations.
This paper presents three discussions. First, three boundary conditions of natural frequencies and the modal effects of fuel cells were evaluated. The results showed that the first and the second frequencies of the three boundary conditions were reduced by 60% and 67%, respectively, compared with the free boundary condition. Second, the Young modulus and density effects of various components of the fuel cell were considered. The simulation results showed that the Young modulus and density of the outer end plate was ±15%, causing the natural frequencies to be ±5%–7% and ∓4%–6% of the variation, and the remaining component’s Young modulus and density variations effects were extremely small. Finally, a 3D model of the fuel cell stack showed that for two or more fuel cell stacks, the natural frequency decreases when the number of layers increases at the free boundary.
目次 Table of Contents
論文審定書 i
致謝 ii
摘 要 iii
目錄 v
表目錄 viii
圖目錄 x
第 一 章 緒論 1
1.1 前言 1
1.2 燃料電池的分類 2
1.3 研究動機與目標 4
1.4 文獻回顧 4
1.4. 1燃料電池分析 4
1.4. 2振動模擬分析 7
1.4. 3振動實驗分析 8
1. 1 全文架構 9
第 二 章 基礎理論 19
2. 1基本振動原理 19
2. 2有限元素法 22
2. 3 ANSYS-Workbentch介紹 24
第 三 章 模擬與驗證 30
3. 1 PEMFC模型建立 30
3.1. 1元素與網格 31
3.1. 2各層關係與剛性影響 32
3. 2模擬之相關設定 32
3.2. 1假設條件 33
3.2. 2層內部黏合與摩擦比較 33
3.2. 3螺栓預應力 35
3.2. 4拘束方式 36
3. 3實驗方法與驗證 36
3.3. 1實驗設備 37
3.3. 2實驗步驟 37
3.3. 3模擬驗證 38
第 四 章 結果與討論 56
4. 1 拘束方式 56
4. 2 單顆燃料電池的材料參數變異之影響 59
4.2. 1楊氏係數變異之影響 59
4.2. 2密度變異之影響 60
4. 3單顆燃料電池與電池堆於自然頻率和振動模態之比較 61
第 五 章 94
5. 1 結論 94
5. 2 未來展望 94
參考文獻 96
參考文獻 References
[1]衣寶廉,燃料電池-原理與應用,五南圖書股份有限公司,台北,台灣,2005
[2]盧敏彥,燃料電池電極觸媒(一)-高分子電解質膜燃料電池陽極觸媒,The Chinese Chemical Society,台北,第62捲第一期,pp.139~148,2009。
[3]黃鎮江,燃料電池,全華圖書股份有限公司,台北,台灣,2007
[4]T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal Electrochemical Society, Vol. 138, pp. 2334-2342, 1991.
[5]G. G. Scherer, “Interfacial Aspects in the Development of Polymer Electrolyte Fuel Cells”, Solid State Ionics, Vol. 94, pp. 249-257, 1997.
[6]D. Singh, D. M. Lu and N. Djilali, “A Two-dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells”, International Journal of Engineering Science, Vol. 37, pp. 431-452, 1999.
[7]W. M. Yan, C. Y. Soong, F. L. Chen and H. S. Chu, “Effects of Flow Distributor Geometry and Diffusion Layer Porosity on Reactant Gas Transport and Performance of Proton Exchange Membrane Fuel Cells ”, Journal Power Sources, Vol. 125, pp. 27-39, 2004.
[8]S. J. Lee, C. D. Hsu and C. H. Huang, “Analyses of the Fuel Cell Stack Assembly Pressure”, Journal of Power Sources, Vol. 145, pp. 353–361, 2005.
[9]陳震宇,呼吸式微質子交換膜燃料電池堆設計研究,碩士論文,國立成功大學航空太空工程研究所,台南,台灣,2005
[10]J. Ge, A. Higier and H. Liu, “Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance”, Journal of Power Sources, Vol. 159, Iss.2, pp.922-927, 2006.
[11]H. Tawfik, Y. Hunga and D. Mahajan, “Metal Bipolar Plates for PEM Fuel Cell—a Review”, Journal of Power Sources, Vol.163, pp.755–767, 2007.
[12]S. W. Perng, H. W. Wu, “Effects of Internal Flow Modification on the Cell Performance Enhancement of a PEM Fuel Cell”, Journal of Power Sources, Vol. 175, Iss. 2, pp. 806–816, 2008.
[13]C. Y. Wen, Y. S. Lin and C. H. Lu, “Experimental Study of Clamping Effects on the Performances of a Single Proton Exchange Membrane Fuel Cell and a 10-cell Stack”, Journal of Power Sources, Vol. 192, Iss.2, pp.475-485, 2009.
[14]H. K. Ma, S. H. Huang, J. S. Wang, C. G. Hou, C. C. Yu and B. R. Chen, “Experimental Study of a Novel Piezoelectric Proton Exchange Membrane Fuel Cell with Nozzle and Diffuser”, Journal of Power Sources, Vol.195, pp.1393–1400, 2010.
[15]P. Lin, P. Zhou and C.W. Wu, “Multi-objective Topology Optimization of End Plates of Proton Exchange Membrane Fuel Cell Stacks”, Vol.196, pp.1222–1228, 2011.
[16]C. H. Chien, L. C. Chen, J. W. Che, C. I. Chen, T. H. Su, J. Y. Lin, W. T. Lin, Y. D. Jhuang, J. J. Li, “Effect of Bolts Assembly on the Deformation and Pressure Distribution of Flow-Channel Plates in Micro-PEMFC”, International Conference on Computational & Experimental Engineering and Sciences, Crete, Greece, pp.33-41, April 30-May 4, 2012.
[17]W. J. Yang, S. J. Kang andY. B. Kim, “Numerical Investigation on the Performance of Proton Exchange Membrane Fuel Cells with Channel Position Variation”, International Journal of Energy Research, Vol.36, pp.1051-1064, 2012
[18]R. Vijayakumar, T. Ramkumar, S. Maheswari, P. Sridhar and S. Pitchumani, “Current and Clamping Pressure Distribution Studies on the Scale-up Issues in Direct Methanol Fuel Cells”, Electrochimica Acta, Vol. 90, pp. 174-282, 2013.
[19]Y. Luo, Q. Guo, Q. Du, Y. Yin and K. Jiao,” Analysis of Cold Start Processes in Proton Exchange Membrane Fuel Cell Stacks”, Journal of Power Sources, Vol.224, pp. 99-114, 2013.
[20]Y. B. Kim, H. Noguchi and M. Amagai, “Vibration Fatigue Reliability of BGA-IC Package with Pb-free Solder and Pb–Sn Solder”, Microelectronics Reliability, Vol.46, pp.459–466, 2006.
[21] 彭士維,具剪力變形影響的雙層複合方板之振動分析,博士論文,國立成功大學工程科學系碩博士班,台南,台灣,2005
[22]T. Koizumi, N. Tsujiuchi, S. Ohno, Vibration Analysis for Polymer Electrolyte Fuel Cell Stack Assembly, Conference & Exposition on Structural Dynamics, Vol.25, 2007
[23]盧勇竣,有限元素法應用於機車結構之簡諧分析與應用,碩士論文,國立成功大學機械工程系,台南,台灣,2010
[24]H. E. U. Ahmed, R. Banan, J. W. Zu and A. Bazylak, “Free Vibration Analysis of a Polymer Electrolyte Membrane Fuel Cell”, Journal of Power Sources, Vol.196, pp.5520-5525, 2011.
[25]王栢村、林鴻裕、李英志,環境振動試驗用印刷電路板之模型驗證,中華民國力學學會第廿九屆全國力學會議,新竹,台灣,94 年 12 月 16-17 日
[26]V. Rouss, P. Lesage, S. Be´got, D. Candusso, W. Charon, F. Harel, X. Francois, V. Selinger, C. Schilo and S. Yde-Andersen, “Mechanical Behaviour of a Fuel Cell Stack Under Vibrating Conditions Linked to Aircraft Applications Part I: Experimental”, Journal of hydrogen energy, Vol.33, pp.6755-6765, 2008
[27]V. Rouss, P. Lesage, S. Be´got, D. Candusso, W. Charon, F. Harel, X. Francois, V. Selinger, C. Schilo and S. Yde-Andersen, “Mechanical behaviour of a Fuel Cell Stack Under Vibrating Conditions Linked to Aircraft Applications part I I: Three-dimensional Modelling”, Journal of hydrogen energy, Vol.33, pp.6281-6288, 2008.
[28]N. Rajalakshmi, S. Pandian and K. S. Dhathathreyan, “Vibration Tests on a PEM Fuel Cell Stack Usable in Transportation Application”, Journal of hydrogen energy, Vol.34, pp.3833-3837, 2009.
[29]Y. Hou, W. Zhou and C. Shen, “Experimental Investigation of Gas-tightness and Electrical Insulation of Fuel Cell Stack Under Strengthened Road Vibrating Conditions”, International Journal of Hydrogen Energy, Vol.36, pp.13763-13768, 2011.
[30]G. Diloyan, M. Sobel, K. Das and P. Hutapea, “Effect of Mechanical Vibration on Platinum Particle Agglomeration and Growth in Polymer Electrolyte Membrane Fuel Cell Catalyst Layers”, Journal of Power Sources, Vol.214, pp.59-67, 2012.
[31]賴耿陽,機械振動學概論,復漢出版社,台南,台灣,2000
[32]王栢村,振動學,全華圖書股份有限公司,台北,台灣,2007
[33]蕭庭郎,振動學,高立圖書有限公司,台北,台灣,2004
[34]蔡國忠,有限元素分析及工程應用ANSYS Workbench,易習圖書,台北,台灣,2008
[35]常見材料性質參數http://211.71.86.13/web/jp/05sb/cllx/files/参考资料/常见材料性能参数.pdf,2013/02/22
[36]王栢村,實驗模態分析,上課講義,國立屏東科技大學機械系,2006
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code