Responsive image
博碩士論文 etd-0727113-131341 詳細資訊
Title page for etd-0727113-131341
論文名稱
Title
實驗與數值模式模擬孤立內波與東沙環礁外地形之交互作用
Laboratorial and numerical study on the interaction of internal solitary wave with the topography outside Dongsha Atoll
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
孤立內波、東沙環礁、數值模式、水槽實驗、垂直渦黏滯係數
Donsha atoll, laboratory experiment, ISW, vertical eddy viscosity, numerical study
統計
Statistics
本論文已被瀏覽 5733 次,被下載 272
The thesis/dissertation has been browsed 5733 times, has been downloaded 272 times.
中文摘要
南海海域內波事件發生頻繁,是近年來海洋學者研究內波的重要地點。而南海
中的東沙環礁正好位於內波傳遞的路徑上。根據Wang(2007)等人所提出在東沙
環東北岸的20 公尺水深處的陸棚平台會有冷水現象的發生。Chen(2010)等人則
更進一步的以POM (Princeton Ocean Model) 模式模擬出此溫降現象與內波跟環
礁地形的交互作用,並模擬出內波把下層較冷的海水帶至陸棚平台上。

本研究以內波斷面水槽(12*0.5*0.7m),佈置上下兩層淡、鹽水水體,利用重力
塌陷法製造孤立內波,模擬孤立內波傳入東沙環礁模型地形的交互作用。研究主
要著重於被孤立內波帶上平台之水體的變化,透過數位攝影機與MicroADV量
測下層水體被帶到平台上時的滯留情形與平台上水體的流速,再將流速資料透過
慣性消散法求得內波帶上之下層水體的能量消散率,最後再利用k-ε紊流模式得
到其平台上之渦流黏滯系數。

本研究另一個重點為參考Chen(2011)等人的設定,利用POM 模式來模擬內波
把冷水帶上環礁平台的現象。為了使台階上混合情形更好,進一步對模式內
Mellor-Yamada紊流閉合模式中紊流尺度的設定加以修改以增加垂直渦黏滯係數
KH,而修改後的模式其KH確實較修改前有所提升,但對於平台上的冷水擴散影
響還是有限。另外在模擬結果中也發現當內波進入平台之前,會產生一個下沉流
速並提高水體的渦度,使內波前端與下沉流速之間,水深約-6 公尺的地方產生較
大的垂直渦黏滯係數。
Abstract
In the South China Sea, internal waves occur frequently, it is a site that important to
study for internal waves, because the Donsha atoll just on path of internal waves
propagate. There is a step measured a phenomenon of cooling water at depth about 20
m on the Donsha atoll northeastern side by Wang et al.(2007). Further, Chen et al.
(2010) had simulated internal waves interacting with topography of Donsha atoll by
POM (Princeton Ocean Model), and found the internal waves bringing up cold deep
water to the shallows.

This study used the flume (12*0.5*0.7m) to set two-layers fluid system, and
generating internal solitary waves by gravity-collpse to simulating the interaction of
ISW with the topography model. This experiment focus on the variation of lower
layer fluid carried on the step by ISW. A digital camera and MicroADV are used for
save image and measure velocity for lower layer fluid on the step and then used
inertial dissipation to obtain the energy dissipation by velocity. Finally, we used the
k-ε turbulent model to obtain the eddy viscosity by energy dissipation.

On the other hand, this study also simulated by POM, and the model setting refer to
Chen et al.(2011). In order to enhance the mixing on the step, we modify turbulence
scale length to increase vertical eddy viscosity KH、Km in Mellor-Yamada turbulence
closure model, and KH、Km has increased indeed after modify, but it was unobvious
that enhance mixing. Besides, in the result of simulate, we found a downward vertical
velocity before internal waves into the step, this downward velocity has increased the
vorticity at depth about 6 m on the step, and it cause KH、Km to high between internal
waves and downward velocity.
目次 Table of Contents
章次 頁次
謝誌………………………………………………………………………….………...i
中文摘要………………………………………………………………………………ii
英文摘要……………………………………………………………………………...iii
目錄………………………………………………………………………….………..iv
圖目錄……………………………………………………………………………...…vi
表目錄……………………………………………………………..………………....xii
符號表……………………………………………………………..………………...xiii
第一章、緒論………………………………………………………………………….1
1.1 文獻回顧……………………………………………………………………...1
1.2 研究目的……………………………………………………………………...8
第二章、實驗設計與方法…………………………………………………………….9
2.1 水槽實驗研究區域與背景介紹…………………………………………...….9
2.2 儀器與實驗配置……………………………………………………………..12
2.2.1 實驗儀器介紹………………………………………………………...12
2.2.2 實驗方法與儀器配置………………………………………………...16
2.2.3 實驗條件……………………………………………………………...18
2.2.4 實驗步驟……………………………………………………………...19
2.3 影像資料處理與分析………………………………………………………..22
2.3.1 影像曲率校正………………………………………………………...22
2.3.2 內波影像處理………………………………………………………...25
2.4 MicroADV流速資料與處理………………………………………………...30
2.5 流速資料分析…………………………………………………………….....31
2.5.1 TKE (Turbulent Kinetic Energy) 法…………………………….…....31
2.5.2 慣性消散 (inertial dissipation) 法………………………………......32
2.5.3 k- 紊流模式-渦流黏滯系數關係式……………………………........34
第三章、數值模式介紹與設定………………………………………………….….36
3.1 POM模式介紹…………………………………………………………….....36
3.2 模式設定與模擬區域………………………………………………………..37
3.3 紊流閉合模式修改………………………………………………………….39
第四章、實驗與模式模擬結果與討論……………………………………………..40
4.1 水槽實驗結果……………………………………………………………....40
4.1.1 初始波型…………………………………………………………......37
4.1.2 MicroADV資料…………………………………………………........57
4.1.3 平台上能量耗散率與渦黏滯係數………………………………......61
4.1.4 平台區域影像……………………………………………………......68
4.2 POM 模式模擬結果………………………………………………………....72
4.2.1 修改紊流尺度結果………………………………………………......72
4.2.2 內波前端對垂直渦黏滯係數影響………………………………......85
4.2.3 深海與淺海渦黏滯係數比較.........………………………………......96
第五章、結論……………………………………………………………..................99
參考文獻……………………………………………………………........................101
附錄(一) POM 模式簡介……………………………...…………….......................105
附錄(二)流速無因次化公式………………………………………….....................115
附錄(三)渦度公式…………………................……………………….....................115
參考文獻 References
1. 許泰文,《近岸水動力學》,中國土木水利工程學會,2003
2. 陳信旭,《孤立內波的傳遞及在單斜版上反射之實驗研究》,國立中山大學海
洋物理研究所碩士論文,2004
3. 蔡金晏、許泰文、歐善惠、林建鋒、徐立昌,《高雷諾數孤立波通過矩形潛
堤之流場變化》,第27 屆海洋工程研討會論文集,2005
4. 吳瑞中,《潮汐引至呂宋海峽內波之數值研究》,國立中山大學海洋物理研究
所碩士論文,2007
5. 吳承霖,《兩層密度流體之非線性模擬》,國立中山大學海洋物理研究所碩士
論文,2011
6. 歐彥廷,《規則波通過矩形溝渠內分層密度流體之波動機制研究》,國立成功
大學水利及海洋工程碩士論文,2008
7. 郭哲成,《連續內波在斜坡前緣的紊流特性》國立中山大學海洋物理研究所
碩士論文,2012
8. Anderson, R. J., (1993) .A study of wind stress and heat flux over the open ocean
by the inertial-dissipation method, Journal of Physical Oceanography, 23,
2153-2161.
9. Berntsen, J., J. Xing & A. M. Davies (2008) .Numerical studies of internal waves
at a sill: Sensitivity to horizontal grid size and subgrid scale closure, Continental
Shelf Research, 28, 1376-1393.
10. Boegman, L., & G. N. Ivey (2009) .Flow separation and resuspension beneath
shoaling nonlinear internal waves, Journal of Geophysical Research, 114,
C02018.
11. Cai, S., X. Long, Z. Gan (2002) .A numerical study of the generation and
propagation of internal solitary waves in Luzon Strait, Oceanologica Acta, Vol.
25, 51-60
12. Canny, J. (1986) .A computational approach to edge detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
13. Chen, G. Y., R. J. Wu, & Y. H. Wang (2010) .Interaction between internal solitary
waves and an isolated atoll in the northern South China Sea, Ocean Dynamics,
1285-1292.
14. Chen, G. Y., & R. J. Wu (2011) .Effects of nearshore bathymetry on the cooling
due to internal solitary wave, Current Development in Oceanography, 2,
157-167.
15. Chen, C. Y., J. R. C. Hsu, M. H. Cheng, H. H. Chen, & C. F. Kuo (2007) .An
investigation on internal solitary waves in two-layer fluid: propagation and
reflection steep slopes, Ocean Engineering, 34, 171-184.
16. Cheng, M. H., & J. R. C. Hsu, (2010) .Laboratory experiments on depression
interfacial solitary waves over a trapezoidal obstacle with horizontal plateau,
Ocean Engineering, 37, 800-818.
17. Davies, A. M., & J. Xing, (2004) .modeling processes influencing wind-induced
internal wave generation and propagation, Continental Shelf Research, 24,
2245-2271.
18. Ezer, T., (2005) .Entrainment, diapycnal mixing and transport in
three-dimensional bottom gravity current simulations using the Mellor-Yamada
turbulence scheme, Ocean Modeling, 9, 151-168.
19. Fang, W., R. Chen, and Q. Mao (2000) .Abrupt strong currents over continental
slope of northern South China Sea. Trop Oceanol. 19 (1), 70-75.
20. Fett, R. W., and K. Rabe, (1977) .Satellite observation of internal wave refraction
in the South China Sea. Geophys. Res. Lett. 4 (5), 189-191.
21. Helfrich, K. R., & W. K. Melville, (1986) .On long nolinear internal waves over
slope-shelf topography, J. Fluid Mech., 167, 285-308.
22. Helfrich, K. R., & W. K. Melville, (2006) .Long nonlinear internal waves, Annu.
Rev. Fluid Mech., 38, 395-425.
23. Hsu, M. K., & A. K. Liu, (2000) .Nonlinear internal waves in the South China
Sea, Canadian Journal of Remote Sensing, 26, 72-81.
24. Kaku, V. J., M. C. Boufadel, M. Asce, & A. D. Venosa, (2006) .Evaluation of
mixing energy in laboratory flasks used for dipersant effectiveness testing, J.
Environ. Eng., 132, 93-101.
25. St. Laurent, L., H. Simmons, T. Y. Tang, and Y. H. Wang. (2011) .Turbulent
properties of internal waves in the South China Sea, Oceanography, 24(4), 78-87
26. Liu, A. K., Y. S. Chang, M. K. Hsu, & N. K. Liang, (1998) .Evolution of
nonlinear internal waves in the East and South China Seas, Journal of
Geophysical Research, 103, 7995-8008.
27. Martin, P. J., (1985) .Simulation of the mixed layer at OWS November and Papa
with several models, Journal of Geophysical Research, 90, 903-916.
28. Mellor, G. L., & T. Yamada, (1974) .A hierarchy of turbulence closure models
for planetary boundary layers, Journal of Atmospheric Sciences, 31, 1791-1806.
29. Mellor, G. L., & T. Yamada, (1982) .Development of a turbulence closure model
for geophysical fluid problems, Reviews of Geophysics and Space Physics, 20,
851-875.
30. Mellor, G. L., (2001) .One-dimensional, ocean surface layer modeling: a
problem and a solution, Journal of Physical Oceanography, 31, 790-809.
31. Mellor, G. L., & A. Blumberg, (2004) .Wave breaking and ocean surface layer
thermal response, Journal of Physical Oceanography, 34 693-698.
32. Michallet, H., & E. Barthelemy, (1998) .Experimental study of interfacial
solitary waves, J. Fluid Mech., 366, 159-177.
33. Stapleton, K. R., and D. A. Huntley (1995) .Seabed stress determinations using
the inertial dissipation method and the turbulent kinetic energy method, Earth
Surface Processes and Landforms, 20, 807-815.
34. Sveen, J. K., Y. Guo, P. A. Davies, & J. Grue, (2002) .On the breaking of internal
solitary waves at a ridge, J. Fluid Mech., 469, 161-188.
35. Tian, J., Q. Yang, & W. Zhao, (2009) .Enhanced diapycnal mixing in the South
China Sea, Journal of Physical Oceanography, 39, 3191-3203.
36. Thorpe, S. A., (2007). An introduction to ocean turbulence, Cambridge university
press.
37. Vlasenko, V., & K. Hutter, (2002) .Numerical experiments on the breaking of
solitary internal waves over a slope-shelf topography, Journal of Physical
Oceanography, 32, 1779-1793.
38. Wang, Y. H., C. F. Dai, & Y. Y. Chen, (2007) .Physical and ecological processes
of internal waves on an isolated reef ecosystem in the South China Sea,
Geophysical Research Letters, 34, L18609.
39. Zhao, Z., V. Klemas, Q. Zheng, X. H. Yan, (2004) .Remote sensing evidence for
baroclinic tide origin of internal solitary waves in the northeastern South China
Sea, Geophysical Research Letters, 31, L06302.
40. Z. Zhang, (2000) .A flexible new technique for camera calibration, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code