Responsive image
博碩士論文 etd-0727113-140730 詳細資訊
Title page for etd-0727113-140730
論文名稱
Title
膠態電解質應用於超級電容器之研究
Study of supercapacitor using polymer gel electrolyte
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
膠態電解質、功率密度、能量密度、超級電容器、中間相微碳球
Power density, Polymer gel electrolyte, Supercapacitor, Mesocarbon microbeads, Energy density
統計
Statistics
本論文已被瀏覽 5734 次,被下載 0
The thesis/dissertation has been browsed 5734 times, has been downloaded 0 times.
中文摘要
本研究以中間相微碳球(Mesocarbon microbeads, MCMB)製備超級電容器之碳電極,探討導電碳黑的添加量對電容特性的影響,找出具最佳電容特性之碳電極製備參數;並使用LiClO4和LiBOB之鋰鹽與NMP溶劑來製備膠態電解質,以阻抗頻譜分析(EIS)和恆電流充放電測試(Charge-discharge tests)來討論不同鋰鹽製備的膠態電解質對超級電容器特性之影響;最後以恆電流充放電測試(Charge-discharge tests)評估在膠態電解質在不同厚度及不同環境下溫度對超級電容特性之影響。
研究結果顯示,使用具高比表面積(2620 m2/g)的中間相微碳球,並添加5 wt.%的碳黑,可製備出具最佳電容特性的碳電極,其比電容值於水系電解質(1 M KOH)中為260.48 F/g。此外,由於使用LiClO4製備之膠態電解質其本體阻抗、與碳電極之介面阻抗、元件衰退率及元件之比電容值皆優於使用LiBOB製備之膠態電解質,故本研究選定LiClO4作為製作超級電容器之膠態電解質之離子傳導材料。但由於所得到之超級電容器之衰退率高達39.26%,因此添加離子溶液至膠態電解質中,可使得超級電容器之衰退率降至2.66%。根據文獻得知,適當的膠態電解質厚度對於超級電容器之電容特性有益,實驗結果顯示在膠態電解質厚度為177 μm時,有最佳比電容值234.22 F/g,此時能量密度與功率密度為203.13 Wh/kg及1.61 kW/kg。
Abstract
In this study, the carbon electrode of supercapacitor was fabricated by using mesocarbon microbeads. For finding the optimal processing parameters of carbon electrode, the capacitative properties of supercapacitor are investigated. To prepare the polymer gel electrolyte, NMP solution and two lithium salts, LiClO4 and LiBOB were adopted. The influences of different lithium salts of polymer gel electrolyte on the characteristics of supercapacitor are studied by using electrochemical impedance spectroscopy (EIS) and charge-discharge tests. Besides, the influences of different thicknesses of polymer gel electrolyte and different environment temperatures on the characteristics of supercapacitor are studied by using charge-discharge tests.
Experimental results reveal that the optimum carbon electrode can be obtained using mesocarbon microbeads with high specific surface area (2620 m2/g) and adding 5 wt.% carbon black. The specific capacitance of carbon electrode in 1 M KOH is 260.48 F/g. Besides, the ohmic impedance, interface impedance with carbon electrode, rate of decline and specific capacity of polymer gel electrolyte prepared by LiClO4 are better than those prepared by LiBOB, so LiClO4 is selected the lithium salt ion of supercapacitor in this study. But the rate of decline of specific capacitance reach up to 39.26% after 30 times charge-discharge tests, so the ionic liquid is added to the polymer gel electrolyte, to reduce the rate of decline to 2.66%. According to literatures, appropriate thickness of polymer gel electrolyte is beneficial on the characteristics of capacitance. Experimental results reveal that the highest specific capacitance is 234.22 F/g when the thickness of polymer gel electrolyte is 177 μm in this study, then the energy density and the power density are 203.13 Wh/kg and 1.61 kW/kg.
目次 Table of Contents
目錄
論文審定書
誌謝
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 概述 1
1-2 超級電容器文獻回顧 4
1-2-1 活性碳電極文獻探討 4
1-2-2 膠態電解質文獻探討 6
1-3 研究動機 7
1-4 研究內容 9
第二章 理論 10
2-1 超級電容器材料之簡介 10
2-2 超級電容器結構 12
2-2-1 集電板 13
2-2-2 碳電極層 13
2-2-3 電解質層 14
2-3 超級電容器電極製成方式 16
2-4 超級電容器的工作原理 17
2-4-1 電雙層電容儲能原理 17
2-5 電化學特性 21
2-5-1 二極式與三極式電容器 21
2-5-2 電化學電容器之電容測定方法 23
2-6 阻抗頻譜分析理論 27
2-6-1 EIS理論 27
2-6-2 等效電路與模擬 28
2-6-3 常見電路元件之電化學物理意義 30
第三章 實驗 34
3-1 碳電極製備 35
3-1-1 碳膏製備材料 35
3-1-2 碳膏調配 35
3-1-3 基板之準備與清洗 35
3-1-4 碳電極之塗佈 37
3-1-5 電極薄膜製程參數 37
3-2 膠態電解質製備 38
3-2-1 膠態電解質製備材料 38
3-2-2 膠態電解質之製備 40
3-3 超級電容器製作 40
3-4 電極薄膜物性分析 41
3-4-1 比表面積與孔徑分析 41
3-4-2 場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM)分析 44
3-5 阻抗頻譜分析 45
3-6 電化學特性分析 45
3-6-1 循環伏安(Cyclic voltammogram, CV)分析 46
3-6-2 恆電流充放電測試(Charge-discharge tests) 47
3-6-3 能量密度與功率密度 47
第四章 結果與討論 48
4-1 添加不同重量百分比碳黑對超級電容特性之影響 48
4-1-1 循環伏安分析 48
4-2 以LiClO4或LiBOB製備膠態電解質對超級電容特性之影響 51
4-2-1 膠態電解質之交流阻抗分析 51
4-2-2超級電容器元件之交流阻抗分析 52
4-2-3恆電流充放電測試 53
4-3 改善膠態電解質之穩定度 56
4-3-1 恆電流充放電測試 56
4-4 探討不同膠態電解質厚度對超級電容特性之影響 58
4-4-1 膠態電解質剖面結構SEM分析 58
4-4-2 恆電流充放電測試 59
4-5 探討不同環境溫度對超級電容特性之影響 60
4-5-1 充放電效率分析 60
4-5-2 能量密度與功率密度 61
第五章 結論 63
參考文獻 65
附錄 70
參考文獻 References
參考文獻
[1] 21世紀再生能源資訊網(REN21),2012全球再生能源狀況報告(GSR2012)
[2] 美國能源資訊協會(EIA),2011國際能源展望資料(IEO2011)。
[3] D. H. Fritts, J. Electrochem. Soc., 144 (1997) 2233
[4] 鄧梅根,“電化學電容器電極材料研究”,中國科學技術大學出版社,(2009)。
[5] 高志勇、陳耿陽、吳富其、江萬爵、賴志坤,“超高電容器製程技術簡介”,工業材料,第166期,(2000),p.113。
[6] Roger Amade, Eric Jover, Burak Caglar, Toygan Mutlu and Enric Bertran, J. Power Sources, 196 (2011) 5779.
[7] Chao Zheng, Weizhong Qian, Fei Wei, Materials Science and Engineering, 177 (2012) 1138.
[8] R. Salinger, U. Fischer, C. Herta and J. Fricke, J. Non-Cryst. Solids, 225 (1998) 81.
[9] B. Fang, Y. Z. Wei, K. Maruyama and M. Kμmagai, J. Appl. Electrochem., 35 (2005) 229.
[10] Afshin Pendashteh, Mir Fazlollah Mousavi, Mohammad Safi Rahmanifar, Electrochimica Acta, 88 (2013) 347.
[11] Qingqing Zhang, Yu Li, Yiyu Feng, Wei Feng, Electrochimica Acta, 90 (2013) 95.
[12] N. L. Wu and S. Y. Wang, J. Power Sources, 110 (2002) 233.
[13] J. P. Zheng and T. R. Jow, J. Electrochem. Soc., 142 (1995) L6.
[14] Da-WeiWang, Feng Li, Hui-Ming Cheng, J. Power Sources, 185 (2008) 1563.
[15] S.-J. Kim, G.-J. Park, B.C. Kim, J.-K. Chung, G.G. Wallace, S.-Y. Park, Synthetic Metals, 161 (2012) 2641.
[16] C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 145 (1998) 4097.
[17] V. Srinivasan and J. W. Weidner, J. Power Sources, 108 (2002) 15
[18] H. Y. Lee and J. B. Goodenough, J. Solid State Chem., 148 (1999) 81.
[19] T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe and K. Kajita, Solid State Ion., 152-153 (2002) 833.
[20] Qiang Li, Jordan M. Anderson, Yiqing Chen and Lei Zhai, Electrochimica Acta, 59 (2012) 548.
[21] Yun Xue, Ye Chen, Mi-Lin Zhang, Yong-De Yan, Materials Letters, 62 (2008) 3884.
[22] H. Talbi, P.E. Just and L.H. Dao, J. Appl. Electrochem., 33 (2003) 465.
[23] V. Gupta and N. Miura, Mater. Lett., 60 (2006) 1466.
[24] S.K. Tripathi, A. Kμmar and S.A. Hashmi, Solid State Ion., 177 (2006) 2979.
[25] Q. F. Wu, K. X. He, H. Y. Mi and X. G. Zhang, Mater. Chem. Phys., 101 (2007) 367.
[26] J. Wang, Y. Xu, X. Chen and X. Du, J. Power Sources, 163 (2007) 1120.
[27] S. R. P. Gnanakan, M. Rajasekhar and A. Subramania, Int. J. Electrochem. Sci., 4 (2009) 1289.
[28] H. L. Becker, U. S. Patent, 2800616 (1957).
[29] H. Shi, Electrochim. Acta, 41 (1995) 1633.
[30] IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 31 (1972) 578.
[31] G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, J. Electrochem. Soc., 147 (2000) 2486.
[32] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin and F. Beguin, J. Phys. Chem. Solids, 65 (2004) 287.
[33] Hsisheng Teng, Yao-Jen Chang and Chien-To Hsieh, Carbon, 39 (2001) 1981.
[34] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41 (2003) 1765.
[35] M. J. Bleda-Martinez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 43 (2005) 2677.
[36] T. Momma, J. Power Sources, 60 (1996) 249.
[37] D. Qu, J. Power Sources, 109 (2002) 403.
[38] M. Nakamura, M. Nakanishi and K. Yamamoto, J. Power Sources, 60 (1996) 225.
[39] I. J. Kim, S. Yang, S. I. Moon and H. S. Kim, J. Power Sources, 164 (2007) 964.
[40] P. Sivaraman, V.R. Hande, V.S. Mishra, Ch. Srinivasa Rao and A.B. Samui, J. Power Sources, 124 (2003) 351–354.
[41] Changzhou Yuan, Xiaogang Zhang, Quanfu Wu and Bo Gao, Solid State Ionics, 177 (2006) 1237–1242.
[42] Haijun Yu, Jihuai Wu, Leqing Fan, Kaiqing Xu, Xin Zhong, Youzhen Lin and Jianming Lin, Electrochimica Acta, 56 (2011) 6881–6886.
[43] Shujuan Sun, Jian Song, Zhongqiang Shan and Rongxiu Feng, J. Power Sources, 676 (2012) 1–5.
[44] I. Tanahashi, A. Yoshida and A. Nishino, Carbon, 28 (1990) 477.
[45] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen and Y. Yang, J. Power Sources, 195 (2010) 2118.
[46] H. Honda, Carbon, 26 (1988) 139.
[47] 黃可龍、王兆翔、劉素琴,“鋰離子電池原理與關鍵技術”,化學工業出版社,(2007)。
[48] M. Ue, K. Ida and S. Mori, J. Electrochem. Soc., 141 (1994) 2989.
[49] M. Pham, P. Adet and G. Velasco, Appl. Phys. Lett., 48 (1986) 1348.
[50] R. Xue and I. Chen, Solid State Ion., 18 (1986) 1134.
[51] W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett., 75 (1999) 873.
[52] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
[53] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen and Z.F. Ren, Carbon, 40 (2002) 1193–1197.
[54] C. H. Hamann, A. Hamnett and W. Vielstich, “Electrochemistry”, Wiley-Vch, New York (1998).
[55] H. D. Young, “Physics”, Addison-Wesley Publishing Co., New York (1992).
[56] A. J. Bard and L. R. Faulkner, “Electrochemical Principles, Methods, and Applications”, Oxford University, Britain (1996).
[57] D. Qu and H. Shi, J. Power Sources, 74 (1998) 99.
[58] R. Ko¨tz and M. Carlen, Electrochimica Acta, 45 (2000) 2483–2498.
[59] 黃孟娟、張榮錡,“釕氧化物超高電容材料特性簡介",工業材料,第182期,2002,p.120。
[60] 柯賢文,“表面與薄膜處理技術”,全華科技圖書股份有限公司,(2005),p.1。
[61] S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 109.
[62] E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73 (1951) 373.
[63] 汪建民,“材料分析",中國材料科學學會,(1998)。
[64] B. D. Cullity, “Elements of X-ray Diffraction", (1978) p.102.
[65] Haijun Yu, Jihuai Wu, Leqing Fan, Youzhen Lin, Kaiqing Xu, Ziying Tang, Cunxi Cheng, Shen Tang, Jianming Lin, Miaoliang Huang and Zhang Lan, J. Power Sources, 198 (2012) 402–407.
[66] Deepak P. Dubal and Rudolf Holze, Energy, 51 (2013) 407–412.
[67] 何嘉瑋,“以中間相微碳球製備複合式電極應用於超級電容器之研究",國立中山大學電機工程學系碩士論文,2012。
[68] Allen J.Bard and Larry R.Faulanker, Chap.9, pp.316, John Wiley&Sons, New Year (1980).
[69] J. Ross MacDonald, John Wiley&Sons, New Year (1987).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.147.215
論文開放下載的時間是 校外不公開

Your IP address is 3.15.147.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code